已知一組數(shù)1,1,2,3,5,8,x,21,34,55,按這組數(shù)規(guī)律,x應(yīng)為( 。
A、11B、12C、13D、14
考點:歸納推理
專題:推理和證明
分析:由數(shù)據(jù)可發(fā)現(xiàn)從第三項起每一項都等于前兩項的和,由此規(guī)律即可求出x的值.
解答: 解:由題意得,一組數(shù)1,1,2,3,5,8,x,21,34,55,
則2=1+1,3+1+2,5=2+3,8=3+5,即從第三項起每一項都等于前兩項的和,
所以x+5+8=13,
故選:C.
點評:本題考查了歸納推理,難點在于發(fā)現(xiàn)其中的規(guī)律,考查觀察、分析、歸納能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3男和3女站一排,3女不相鄰,男甲不站兩端,有幾種排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ的終邊過點P(-
3
,1),那么tan(2kπ+θ)的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log0.5(x2-4)的單調(diào)增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等腰梯形ABCD,AB∥CD,DE⊥AB,CF⊥AB,AE=2,沿DE,CF將梯形折疊使A,B重合于A點(如圖),G為AC上一點,F(xiàn)G⊥平面ACE.

(Ⅰ)求證:AE⊥AF;
(Ⅱ)求DG與平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,將∠B=
π
3
,邊長為1的菱形ABCD沿對角線AC折成大小等于θ的二面角B-AC-D,若θ∈[
π
3
,
3
],M、N分別為AC、BD的中點,則下面的四種說法:
①AC⊥MN;
②DM與平面ABC所成的角是θ;
③線段MN的最大值是
3
4
,最小值是
3
4
;
④當(dāng)θ=
π
2
時,BC與AD所成的角等于
π
2

其中正確的說法有
 
(填上所有正確說法的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為:
x=4cosφ
y=3sinφ
(φ為參數(shù)),以坐標(biāo)原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρ=2cosθ
(1)去曲線C1的直角坐標(biāo)方程;
(2)已知點M是曲線C1上任意一點,點N是曲線C2上任意一點,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
滿足|
a
|=2,|
b
|=1,且對一切實數(shù)x,|
a
+x
b
|≥|
a
+
b
|恒成立,則
a
,
b
的夾角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,已知AA1=1,AD=
3
,則異面直線A1D1與B1C所成角的大小為( 。
A、60°B、45°
C、30°D、90°

查看答案和解析>>

同步練習(xí)冊答案