根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程:

(1) 兩準(zhǔn)線間的距離為,焦距為2 ;

(2) 已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P 到兩焦點(diǎn)的距離分別為過(guò)P點(diǎn)作長(zhǎng)軸的垂線恰好過(guò)橢圓的一個(gè)焦點(diǎn).


解:(1) 設(shè)橢圓長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c,則故該橢圓的方程為=1.

(2) 由題設(shè),2a=|PF1|+|PF2|=2 a=.又b2,故該橢圓的方程為


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 已知曲線E:ax2+by2=1(a>0,b>0),經(jīng)過(guò)點(diǎn)的直線l與曲線E交于點(diǎn)A、B,且

(1) 若點(diǎn)B的坐標(biāo)為(0,2),求曲線E的方程;

(2) 若a=b=1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


拋物線y2=-8x的準(zhǔn)線方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


已知拋物線y2=2px(p>0)的焦點(diǎn)為F,P、Q是拋物線上的兩個(gè)點(diǎn),若△PQF是邊長(zhǎng)為2的正三角形,則p的值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 橢圓=1的離心率為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


若橢圓=1的焦距為2,求橢圓上的一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 如圖,已知橢圓=1(a>b>0)的左焦點(diǎn)為F,右頂點(diǎn)為A,點(diǎn)B在橢圓上,且BF⊥x軸,直線AB交y軸于點(diǎn)P.若,則橢圓的離心率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


 如圖,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且=0.

(1) 求橢圓E的離心率;

(2) 已知點(diǎn)D(1,0)為線段OF2的中點(diǎn),M為橢圓E上的動(dòng)點(diǎn)(異于點(diǎn)A、B),連結(jié)MF1并延長(zhǎng)交橢圓E于點(diǎn)N,連結(jié)MD、ND并分別延長(zhǎng)交橢圓E于點(diǎn)P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問(wèn)是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:


在平面上,若兩個(gè)正三角形的邊長(zhǎng)的比為1∶2,則它們的面積比為1∶4,類似地,在空間內(nèi),若兩個(gè)正四面體的棱長(zhǎng)的比為1∶2,則它們的體積比為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案