【題目】在平面直角坐標系xOy中,已知拋物線C:的焦點為F,過F的直線交拋物線C于A,B兩點.
(1)求線段AF的中點M的軌跡方程;
(2)已知△AOB的面積是△BOF面積的3倍,求直線的方程.
【答案】(1);(2)
【解析】
(1)設線段AF的中點的坐標為,,即可求得,將它們代入即可得解。
(2)設,由△AOB的面積是△BOF面積的3倍可得:直線的斜率存在,且的面積是面積的2倍,即可整理得:,設直線的方程為:,聯(lián)立直線方程與拋物線方程可得:,,結合即可求得:,問題得解。
(1)設線段AF的中點的坐標為,
由拋物線的方程可得:焦點
由中點坐標公式可得:
即:
又在拋物線上,所以,
將代入上式可得:
整理得:
所以線段AF的中點M的軌跡方程為:
(2)依據題意作出圖形,如下:
設,且與的取值一正、一負
因為△AOB的面積是△BOF面積的3倍,所以直線的斜率存在,
且的面積是面積的2倍,
即:,整理得:
設直線的方程為:
聯(lián)立直線與拋物線方程可得:,整理得:.
所以,
由解得:.
所以直線的方程為:
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的矩形ABCD中,AB=AD=2,點E為AD邊上異于A,D兩點的動點,且EF//AB,G為線段ED的中點,現(xiàn)沿EF將四邊形CDEF折起,使得AE與CF的夾角為60°,連接BD,F(xiàn)D.
(1)探究:在線段EF上是否存在一點M,使得GM//平面BDF,若存在,說明點M的位置,若不存在,請說明理由;
(2)求三棱錐G—BDF的體積的最大值,并計算此時DE的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,其左、右頂點分別為點,且點關于直線對稱的點在直線上.
(1)求橢圓的方程;
(2)若點在橢圓上,點在圓上,且都在第一象限,軸,若直線與軸的交點分別為,判斷是否為定值,若是定值,求出該定值;若不是定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系平面上的一列點,,…,,記為,若由構成的數(shù)列滿足,,其中為與軸正方向相同的單位向量,則稱為點列.
(1)判斷,,,…,,是否為點列,并說明理由;
(2)若為點列.且點在點的右上方,(即)任取其中連續(xù)三點,,判斷的形狀(銳角三角形,直角三角形,鈍角三角形),并給予證明;
(3)若為點列,正整數(shù),滿足.求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知橢圓C:(a>b>0)的左、右頂點分別為A1(﹣2,0),A2(2,0),右準線方程為x=4.過點A1的直線交橢圓C于x軸上方的點P,交橢圓C的右準線于點D.直線A2D與橢圓C的另一交點為G,直線OG與直線A1D交于點H.
(1)求橢圓C的標準方程;
(2)若HG⊥A1D,試求直線A1D的方程;
(3)如果,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子里有大小相同的3個紅球和3個黑球,從盒子里隨機取球,取到每個球的可能性是相同的,設取到一個紅球得1分,取到一個黑球得0分.
(Ⅰ)若從盒子里一次隨機取出了3個球,求得2分的概率;
(Ⅱ)著從盒子里每次摸出一個球,看清顏色后放回,連續(xù)摸3次,求得分ξ的概率分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點,,從直線上一點P向圓引兩條切線,,切點分別為C,D.設線段的中點為M,則線段長的最小值為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形為正方形,平面,,,.
(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值;
(Ⅲ)在棱上是否存在一點,使得平面平面?如果存在,求的值;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com