A. | 向左平移$\frac{π}{2}$個(gè)單位 | B. | 向右平移$\frac{π}{2}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{4}$個(gè)單位 | D. | 向右平移$\frac{π}{4}$個(gè)單位 |
分析 由已知利用誘導(dǎo)公式可得y=cos[$\frac{1}{2}$(x+$\frac{π}{2}$)],結(jié)合函數(shù)圖象平移的公式即可得到本題答案.
解答 解:∵y=sin ($\frac{π}{4}$-$\frac{x}{2}$)=cos[$\frac{π}{2}$-($\frac{π}{4}$-$\frac{x}{2}$)]=cos($\frac{π}{4}$+$\frac{x}{2}$)=cos[$\frac{1}{2}$(x+$\frac{π}{2}$)],
∴將y=cos $\frac{x}{2}$的圖象向左平移$\frac{π}{2}$個(gè)單位即可得到函數(shù)y=sin ($\frac{π}{4}$-$\frac{x}{2}$)的圖象.
故選:A.
點(diǎn)評(píng) 本題著重考查了三角函數(shù)圖象變換與函數(shù)圖象平移公式等知識(shí),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 由實(shí)數(shù)運(yùn)算“(ab)t=a(bt)”類比到“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)” | |
B. | 由實(shí)數(shù)運(yùn)算“(ab)t=at+bt”類比到“($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$” | |
C. | 由實(shí)數(shù)運(yùn)算“|ab|=|a||b|”類比到“|$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|” | |
D. | 由實(shí)數(shù)運(yùn)算“$\frac{ac}{bc}$=$\frac{a}$”類比到“$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow}$” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b⇒$\frac{a}$>1 | B. | a>b⇒am2>bm2 | ||
C. | a3>b3,ab>0⇒$\frac{1}{a}$<$\frac{1}$ | D. | a2>b2,ab>0⇒$\frac{1}{a}$<$\frac{1}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com