已知a、b為正數(shù),點(diǎn)(xn,yn),由以下方法確定:直線y=-
b
a
x+b和y=
b
a
x的交點(diǎn)為(x1,y1),過點(diǎn)(0,b)和(xn-1,0)的直線與y=
b
a
x的交點(diǎn)為(xn,yn)(n≥2,x∈N+),求(xn,yn).
考點(diǎn):進(jìn)行簡單的合情推理
專題:計算題,推理和證明
分析:求出x1=
a
2
,y1=
b
2
,(x2,y2)=(
a
3
,
b
3
),即可得出結(jié)論.
解答: 解:由題意,x1=
a
2
,y1=
b
2

過點(diǎn)(0,b)和(
a
2
,0)的直線是y=-
2b
a
x+b,它與y=
b
a
x的交點(diǎn)為(x2,y2)=(
a
3
,
b
3
).
∵過點(diǎn)(0,b)和(xn-1,0)的直線與y=
b
a
x的交點(diǎn)為(xn,yn)(n≥2,x∈N+),
∴xn=
a
n+1
,yn=
b
n+1
點(diǎn)評:本題考查簡單的合情推理,考查學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
ax3-x2(a>0)在(0,3)內(nèi)不單調(diào),則實(shí)數(shù)a的取值范圍是(  )
A、a>
2
3
B、0<a<
2
3
C、0<a<
1
2
D、
2
3
<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)F(0,a),直線l:y=-a,其中a為定值且a>0,點(diǎn)N為l上一動點(diǎn),過N作直線l1⊥l.l2為NF的中垂線,l1與l2交于點(diǎn)M,點(diǎn)M的軌跡為曲線C
(Ⅰ)求曲線C的方程;
(Ⅱ)若E為曲線C上一點(diǎn),過點(diǎn)E作曲線C的切線交直線l于點(diǎn)Q,問在y軸上是否存在一定點(diǎn),使得以EQ為直徑的圓過該點(diǎn),如果存在,求出該點(diǎn)坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位,已知直線l的參數(shù)方程為
x=5-
3
2
t
y=-
3
+
1
2
t
(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=4cos(θ-
π
3
).
(Ⅰ)求直線l和圓C的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)P(x,y)在圓C上,求x+
3
y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一顆質(zhì)地均勻的正三棱錐骰子(4個面的點(diǎn)數(shù)分別為1,2,3,4)先后拋擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為x,第二次出現(xiàn)的點(diǎn)數(shù)為y.
(1)求事件“|x-y|=1”的概率.
(2)求點(diǎn)(x,y)落在
x+y≥3
2x+y≤8
x,y>0
的區(qū)域內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=2x2+(x-a)|x-a|,當(dāng)a=1時,是否存在x∈[m,n],f(x)的取值范圍為[
2
n
2
m
],若存在求出m,n的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-ln(x+1-a)+1在x=0處取得極值.
(1)求實(shí)數(shù)a的值;
(2)若關(guān)于x的方程f(x-1)=x2-2x+q在[
1
2
,2]上恰有兩個不相等的實(shí)數(shù)根,求實(shí)數(shù)q的取值范圍;
(3)設(shè)g(x)=f(x-1),試比較
1
2-g(2)
+
1
3-g(3)
+…+
1
n-g(n)
3n2-n-2
n(n+1)
(n∈N*,n≥2)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a<2,函數(shù)f(x)=(x2+ax+a)ex
(1)當(dāng)a=1時,求f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)的極大值是6•e-2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-(a-2)x+4,當(dāng)x=1時函數(shù)取得極值.
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案