若直線x+k(y-1)+3=0和雙曲線
x2
m
-
y2
16
=1恒有公共點(diǎn),則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:直線x+k(y-1)+3=0恒過(guò)定點(diǎn)(-3,1),由直線x+k(y-1)+3=0和雙曲線
x2
m
-
y2
16
=1恒有公共點(diǎn),可得
9
m
-
1
16
≥1
,即可求出實(shí)數(shù)m的取值范圍.
解答: 解:直線x+k(y-1)+3=0恒過(guò)定點(diǎn)(-3,1).
∵直線x+k(y-1)+3=0和雙曲線
x2
m
-
y2
16
=1恒有公共點(diǎn),
9
m
-
1
16
≥1
,
∴0<m≤
144
17
,
故答案為:(0,
144
17
].
點(diǎn)評(píng):本題考查雙曲線的簡(jiǎn)單性質(zhì),考查直線恒過(guò)定點(diǎn),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2-2ax+4在(-∞,-4]是增函數(shù),且在區(qū)間[-4,+∞)上是減函數(shù).求實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合P={1,2,3,4,5},對(duì)任意k∈P和正整數(shù)m,記f(m,k)=
5
i=1
[m
k+1
i+1
]
,其中,[a]表示不大于a的最大整數(shù),則f(2,2)=
 
,若f(m,k)=19,則mk=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+2)=-f(x).則下列結(jié)論
①f(x)的圖象關(guān)于(1,0)對(duì)稱.
②f(x)的圖象關(guān)于直線x=2對(duì)稱.
③f(x)為周期函數(shù),且4為它的一個(gè)周期.
④方程f(x)=0在[0,4]上至少有兩個(gè)根.
其中一定正確的結(jié)論序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若方程
x2
2-m
+
y2
|m|-3
=1表示雙曲線,則m的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={a,b},B={x丨x∈A},則集合A與B的關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二項(xiàng)式(
x
+
1
x
6的展開(kāi)式中常數(shù)項(xiàng)等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足
x-2y≤0
y≤x
y≥-x+m
且z=x+2y的最小值為4,則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l:y=2x+b與函數(shù)y=
1
x
的圖象交于A,B兩點(diǎn),記△OAB的面積為S(O為坐標(biāo)原點(diǎn)),則函數(shù)S=f(b)是( 。
A、奇函數(shù)且在(0,+∞)上單調(diào)遞增
B、偶函數(shù)且在(0,+∞)上單調(diào)遞增
C、奇函數(shù)且在(0,+∞)上單調(diào)遞減
D、偶函數(shù)且在(0,+∞)上單調(diào)遞減

查看答案和解析>>

同步練習(xí)冊(cè)答案