【題目】幾位大學(xué)生響應(yīng)國(guó)家的創(chuàng)業(yè)號(hào)召,開(kāi)發(fā)了一款面向中學(xué)生的應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動(dòng)。這款軟件的激活碼為下面數(shù)學(xué)題的答案:記集合.例如:,若將集合的各個(gè)元素之和設(shè)為該軟件的激活碼,則該激活碼應(yīng)為____________;
定義現(xiàn)指定,將集合的元素從小到大排列組成數(shù)列,若將的各項(xiàng)之和設(shè)為該軟件的激活碼,則該激活碼應(yīng)為_____________.
【答案】376 760
【解析】
令,可得到的最小元素為16,令,可得到的最大元素為31,進(jìn)而可得到第一空的答案;結(jié)合二進(jìn)制表示,當(dāng)時(shí),的各項(xiàng)可以看成首位為1的六位二進(jìn)制數(shù),求出,符合條件的有8個(gè)數(shù),同理可得到其他情況的個(gè)數(shù),即可得到本題答案.
解析:集合,
當(dāng),時(shí),;
當(dāng)時(shí),;
所以共有16個(gè)元素,故激活碼為;
結(jié)合二進(jìn)制表示,當(dāng)時(shí),的各項(xiàng)可以看成首位為1的六位二進(jìn)制數(shù),
對(duì)于,符合條件的有8個(gè)數(shù),
同理對(duì)于,,,時(shí),符合條件的也分別是8個(gè)數(shù),
故激活碼為.
故答案為:376;760
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,對(duì)任意,點(diǎn)都在函數(shù)的圖象上.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列,求數(shù)列的前項(xiàng)和;
(3)已知數(shù)列滿足,若對(duì)任意,存在使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,E是棱DD1的中點(diǎn):
(1)求點(diǎn)D到平面A1BE的距離;
(2)在棱上是否存在一點(diǎn)F,使得B1F∥平面A1BE,若存在,指明點(diǎn)F的位置;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的菱形,側(cè)面底面,,,是中點(diǎn),為的中點(diǎn),點(diǎn)在側(cè)棱上(不包括端點(diǎn)).
(1)求證:
(2)是否存在點(diǎn),使與平面所成角的正弦值為,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某品牌餐飲公司準(zhǔn)備在10個(gè)規(guī)模相當(dāng)?shù)牡貐^(qū)開(kāi)設(shè)加盟店,為合理安排各地區(qū)加盟店的個(gè)數(shù),先在其中5個(gè)地區(qū)試點(diǎn),得到試點(diǎn)地區(qū)加盟店個(gè)數(shù)分別為1,2,3,4,5時(shí),單店日平均營(yíng)業(yè)額(萬(wàn)元)的數(shù)據(jù)如下:
加盟店個(gè)數(shù)(個(gè)) | 1 | 2 | 3 | 4 | 5 |
單店日平均營(yíng)業(yè)額(萬(wàn)元) | 10.9 | 10.2 | 9 | 7.8 | 7.1 |
(1)求單店日平均營(yíng)業(yè)額(萬(wàn)元)與所在地區(qū)加盟店個(gè)數(shù)(個(gè))的線性回歸方程;
(2)根據(jù)試點(diǎn)調(diào)研結(jié)果,為保證規(guī)模和效益,在其他5個(gè)地區(qū),該公司要求同一地區(qū)所有加盟店的日平均營(yíng)業(yè)額預(yù)計(jì)值總和不低于35萬(wàn)元,求一個(gè)地區(qū)開(kāi)設(shè)加盟店個(gè)數(shù)的所有可能取值;
(3)小趙與小王都準(zhǔn)備加入該公司的加盟店,根據(jù)公司規(guī)定,他們只能分別從其他五個(gè)地區(qū)(加盟店都不少于2個(gè))中隨機(jī)選一個(gè)地區(qū)加入,求他們選取的地區(qū)相同的概率.
(參考數(shù)據(jù)及公式:,,線性回歸方程,其中,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù).
(1)當(dāng)時(shí),若對(duì)任意恒成立,求的取值范圍;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn)和,求的取值范圍,并證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F2,點(diǎn)O為雙曲線的中心,點(diǎn)P在雙曲線右支上,△PF1F2內(nèi)切圓的圓心為Q,圓Q與x軸相切于點(diǎn)A,過(guò)F2作直線PQ的垂線,垂足為B,則下列結(jié)論成立的是( )
A. |OA|>|OB|B. |OA|<|OB|
C. |OA|=|OB|D. |OA|與|OB|大小關(guān)系不確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com