精英家教網(wǎng)某商場為吸引顧客消費(fèi)推出一項優(yōu)惠活動.活動規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(Ⅰ)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;
(Ⅱ)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動,他獲得返券的金額記為X(元).求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
分析:(1)返券金額不低于30元包括指針停在A區(qū)域和停在B區(qū)域,而指針停在哪個區(qū)域的事件是互斥的,先根據(jù)幾何概型做出停在各個區(qū)域的概率,再用互斥事件的概率公式得到結(jié)果.
(2)若某位顧客恰好消費(fèi)280元,該顧客可轉(zhuǎn)動轉(zhuǎn)盤2次.隨機(jī)變量X的可能值為0,30,60,90,120.做出各種情況的概率,寫出分布列,算出期望.
解答:解:設(shè)指針落在A,B,C區(qū)域分別記為事件A,B,C.
P(A)=
1
6
,P(B)=
1
3
,P(C)=
1
2

(Ⅰ)若返券金額不低于30元,則指針落在A或B區(qū)域.∴P=P(A)+P(B)=
1
6
+
1
3
=
1
2

即消費(fèi)128元的顧客,返券金額不低于30元的概率是
1
2


(Ⅱ)由題意得,該顧客可轉(zhuǎn)動轉(zhuǎn)盤2次.
隨機(jī)變量X的可能值為0,30,60,90,120.
P(X=0)=
1
2
×
1
2
=
1
4
;
P(X=30)=
1
2
×
1
3
×2=
1
3

P(X=60)=
1
2
×
1
6
×2+
1
3
×
1
3
=
5
18

P(X=90)=
1
3
×
1
6
×2=
1
9
;
P(X=120)=
1
6
×
1
6
=
1
36
.

所以,隨機(jī)變量X的分布列為:
精英家教網(wǎng)
其數(shù)學(xué)期望EX=0×
1
4
+30×
1
3
+60×
5
18
+90×
1
9
+120×
1
36
=40
點評:求離散型隨機(jī)變量期望的步驟:①確定離散型隨機(jī)變量 的取值.②寫出分布列,并檢查分布列的正確與否.③求出期望.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某商場為吸引顧客消費(fèi)推出一項優(yōu)惠活動.活動規(guī)則如下:消費(fèi)每滿100元可以轉(zhuǎn)動如圖所示的圓盤一次,其中O為圓心,且標(biāo)有20元、10元、0元的三部分區(qū)域面積相等.假定指針停在任一位置都是等可能的.當(dāng)指針停在某區(qū)域時,返相應(yīng)金額的優(yōu)惠券.(例如:某顧客消費(fèi)了218元,第一次轉(zhuǎn)動獲得了20元,第二次獲得了10元,則其共獲得了30元優(yōu)惠券.)顧客甲和乙都到商場進(jìn)行了消費(fèi),并按照規(guī)則參與了活動.
(Ⅰ)若顧客甲消費(fèi)了128元,求他獲得優(yōu)惠券面額大于0元的概率?
(Ⅱ)若顧客乙消費(fèi)了280元,求他總共獲得優(yōu)惠券金額不低于20元的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


指針位置 A區(qū)域 B區(qū)域 C區(qū)域
返存金額(單位:元) 60 30 0
五一節(jié)期間,某商場為吸引顧客消費(fèi)推出一項優(yōu)惠活動.活動規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動如
圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券.(假定指針等可能地停在任一位置,指針落在區(qū)域的邊界時,重新轉(zhuǎn)一次)指針?biāo)诘膮^(qū)域及對應(yīng)的返劵金額見右上表.
例如:消費(fèi)218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(1)已知顧客甲消費(fèi)后獲得n次轉(zhuǎn)動轉(zhuǎn)盤的機(jī)會,已知他每轉(zhuǎn)一次轉(zhuǎn)盤指針落在區(qū)域邊界的概率為p,每次轉(zhuǎn)動轉(zhuǎn)盤的結(jié)果相互獨立,設(shè)ξ為顧客甲轉(zhuǎn)動轉(zhuǎn)盤指針落在區(qū)域邊界的次數(shù),ξ的數(shù)學(xué)期望Eξ=
1
25
,標(biāo)準(zhǔn)差σξ=
3
11
50
,求n、p的值;
(2)顧客乙消費(fèi)280元,并按規(guī)則參與了活動,他獲得返券的金額記為η(元).求隨機(jī)變量η的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場為吸引顧客消費(fèi)推出一項促銷活動,促銷規(guī)則如下:到該商場購物消費(fèi)滿100元就可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,進(jìn)行抽獎(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的,若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎,獲得10元獎金,若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎,獲得5元獎金;若轉(zhuǎn)盤指針落在其它區(qū)域則不中獎(若指針停到兩區(qū)間的實線處,則重新轉(zhuǎn)動).若顧客在一次消費(fèi)中多次中獎,則對其獎勵進(jìn)行累加.已知顧客甲到該商場購物消費(fèi)了268元,并按照規(guī)則能與了促銷活動.
(Ⅰ) 求顧客甲中一等獎的概率;
(Ⅱ) 記ξ為顧客甲所得的獎金數(shù),求ξ的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

    某商場為吸引顧客消費(fèi)推出一項優(yōu)惠活動.活動規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

  (I)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;

  (II)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動,他獲得返券的金額記為X(元).

    求隨機(jī)變量X的分布列和數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊答案