【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線的參數(shù)方程為(其中為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線、的極坐標(biāo)方程;
(2)射線:與曲線,分別交于點(diǎn),(且點(diǎn),均異于原點(diǎn)),當(dāng)時(shí),求的最小值.
【答案】(1)的極坐標(biāo)方程為,的極坐標(biāo)方程為(2)
【解析】
(1)由題意首先將參數(shù)方程化為直角坐標(biāo)方程,然后再化為極坐標(biāo)方程即可;
(2)結(jié)合(1)中的參數(shù)方程首先求得的表達(dá)式,然后結(jié)合均值不等式即可求得的最小值.
(1)曲線的普通方程為,令,,
可得的極坐標(biāo)方程為,
曲線的普通方程為,令,,
可得的極坐標(biāo)方程為.
(2)聯(lián)立與的極坐標(biāo)方程得,
聯(lián)立與的極坐標(biāo)方程得,
則
(當(dāng)且僅當(dāng)時(shí)取等號(hào)).
所以的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P—ABC中,△PAC為等腰直角三角形,為正三角形,D為A的中點(diǎn),AC=2.
(1)證明:PB⊥AC;
(2)若三棱錐的體積為,求二面角A—PC—B的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,滿足:.
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若,且.
① 記,求證:數(shù)列為等差數(shù)列;
② 若數(shù)列中任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,求首項(xiàng)應(yīng)滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】春節(jié)來臨之際,某超市為了確定此次春節(jié)年貨的進(jìn)貨方案,統(tǒng)計(jì)去年春節(jié)前后50天年貨的日銷售量(單位:kg),得到如圖所示的頻率分布直方圖.
(1)求這50天超市日銷售量的平均數(shù);(視頻率為概率,以各組區(qū)間的中點(diǎn)值代表該組的值)
(2)先從日銷售在,,內(nèi)的天數(shù)中,按分層抽樣隨機(jī)抽取4天進(jìn)行比較研究,再從中選2天,求這2天的日銷售量都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn),分別是橢圓:的左、右焦點(diǎn),且橢圓上的點(diǎn)到點(diǎn)的距離的最小值為.點(diǎn)M、N是橢圓上位于軸上方的兩點(diǎn),且向量與向量平行.
(1)求橢圓的方程;
(2)當(dāng)時(shí),求△的面積;
(3)當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,,且(),數(shù)列滿足,,對(duì)任意,都有;
(1)求數(shù)列、的通項(xiàng)公式;
(2)令,若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,對(duì)于任意滿足,且,數(shù)列滿足,,其前項(xiàng)和為.
(1)求數(shù)列、的通項(xiàng)公式;
(2)令,數(shù)列的前項(xiàng)和為,求證:對(duì)于任意正整數(shù),都有;
(3)將數(shù)列、的項(xiàng)按照“當(dāng)為奇數(shù)時(shí),放在前面”,“當(dāng)為偶數(shù)時(shí),放在前面”的要求進(jìn)行“交叉排列”得到一個(gè)新的數(shù)列:、、、、、、、、求這個(gè)新數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若關(guān)于的不等式在上恒成立,求的取值范圍;
(Ⅱ)設(shè)函數(shù),在(Ⅰ)的條件下,試判斷在上是否存在極值.若存在,判斷極值的正負(fù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】華東師大二附中樂東黃流中學(xué)位于我國南海邊,有一片美麗的沙灘和一彎天然的海濱浴場(chǎng).如圖,海岸線MAN,,(海岸線MAN上方是大海),現(xiàn)用長為BC的欄網(wǎng)圍成一個(gè)三角形學(xué)生游泳場(chǎng)所,其中.
(1)若,求三角形游泳場(chǎng)所面積最大值;
(2)若BC=600,,由于學(xué)生人數(shù)的增加需要擴(kuò)大游泳場(chǎng)所面積,現(xiàn)在折線MBCN上方選點(diǎn)D,現(xiàn)用長為BD,DC的欄圍成一個(gè)四邊形游泳場(chǎng)所DBAC,使,求四邊形游泳場(chǎng)所DBAC的最大面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com