設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和橢圓的右準(zhǔn)線所圍成的三角形(含邊界與內(nèi)部).若點(diǎn)(x,y)∈D,則目標(biāo)函數(shù)z=x+y的最大值為( )
A.1
B.2
C.3
D.6
【答案】分析:求出雙曲線的兩條漸近線和橢圓的右準(zhǔn)線,建立方程組求出所圍成的三角形(含邊界與內(nèi)部)三個(gè)頂點(diǎn)的坐標(biāo),然后把三個(gè)頂點(diǎn)的坐標(biāo)分別代入目標(biāo)函數(shù)z=x+y,得到的最大的結(jié)果就是目標(biāo)函數(shù)z=x+y的最大值.
解答:解:雙曲線的兩條漸近線方程是,橢圓的右準(zhǔn)線是x=2,
解方程組,得到所圍成三解形的三個(gè)頂點(diǎn)坐標(biāo)分別為A(2,1),B(2,-1),C(0,0).
∵zA=2+1=3,z2=2-1=0,zc=0,
∴目標(biāo)函數(shù)z=x+y的最大值為3.故選C.
點(diǎn)評(píng):本題巧妙地把雙曲線、橢圓和線性規(guī)劃融合到一起,比較新穎,體現(xiàn)了出題者的智慧.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省高三第七次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部.當(dāng)時(shí),的最大值為(    ).

A.12               B.10               C.8                D.6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年新疆烏魯木齊地區(qū)高三第一次診斷性測(cè)驗(yàn)文科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和拋物線y2 ="-8x" 的準(zhǔn)線所圍成的三角形(含邊界與內(nèi)部).若點(diǎn)(x,y) ∈ D,則x+ y的最小值為

A.-1               B.0                C.1                D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆云南省高三上期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部。當(dāng)時(shí),的最大值為(    )

    A.8                B.0                C.-2               D.16

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧省、莊河高中高三上學(xué)期期末理科數(shù)學(xué) 題型:選擇題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部.當(dāng)時(shí),的最大值是                        

    A.24        B.25       C.4       D.7

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省高三下學(xué)期3月月考數(shù)學(xué)理卷 題型:選擇題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和直線所圍成三角形的邊界及內(nèi)部。當(dāng)時(shí),的最大值為(   )

A.24                             B.25                                 C.4                                   D.7

 

查看答案和解析>>

同步練習(xí)冊(cè)答案