【題目】已知函數(shù).(其中常數(shù),是自然對數(shù)的底數(shù))

1)若,求上的極大值點;

2)()證明上單調(diào)遞增;

)求關(guān)于的方程上的實數(shù)解的個數(shù).

【答案】1;(2)()證明見解析,()當(dāng)時,方程上的實數(shù)解的個數(shù)為,當(dāng)時,方程上的實數(shù)解的個數(shù)為.

【解析】

1)首先求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)得到函數(shù)的單調(diào)區(qū)間,再根據(jù)單調(diào)區(qū)間即可得到函數(shù)的極大值點.

2)()首先根據(jù)的單調(diào)性只需證明,將問題轉(zhuǎn)化為證明,構(gòu)造函數(shù),再結(jié)合的單調(diào)性即可證明.ii)首先證明,再證明函數(shù)的最大值,設(shè),分別求出的零點個數(shù),從而得到方程解得個數(shù).

1.

當(dāng)時,.

增函數(shù)

極大值

減函數(shù)

所以函數(shù)的極大值點為.

2)()因為,所以在上必存在唯一的實數(shù),使得.

所以,為增函數(shù),

,,為減函數(shù).

要證明上單調(diào)遞增,只需證明即可.

又因為,所以,

即證即可.

設(shè),,所以為減函數(shù).

當(dāng)時,,,即,

即證

所以上單調(diào)遞增.

)先證明時,.

設(shè),,

因為,所以,為增函數(shù).

所以,即.

再證明函數(shù)的最大值.

因為,所以,.

因為,所以.

所以.

下面證,令,則,

即證,,,.

設(shè),,

所以函數(shù)為增函數(shù).

當(dāng)時,,即.

即證:.

設(shè),

當(dāng)時,,

為減函數(shù),所以上有唯一零點.

當(dāng)時,,,且為增函數(shù).

①當(dāng)時,,即,所以上沒有零點.

②當(dāng)時,,即,所以上有唯一零點.

綜上所述:當(dāng)時,方程上的實數(shù)解的個數(shù)為,

當(dāng)時,方程上的實數(shù)解的個數(shù)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某百貨商店今年春節(jié)期間舉行促銷活動,規(guī)定消費達到一定標(biāo)準(zhǔn)的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該商店經(jīng)理對春節(jié)前天參加抽獎活動的人數(shù)進行統(tǒng)計,表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

(1)經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)該商店規(guī)定:若抽中“一等獎”,可領(lǐng)取600元購物券;抽中“二等獎”可領(lǐng)取300元購物券;抽中“謝謝惠顧”,則沒有購物券.已知一次抽獎活動獲得“一等獎”的概率為,獲得“二等獎”的概率為.現(xiàn)有張、王兩位先生參與了本次活動,且他們是否中獎相互獨立,求此二人所獲購物券總金額的分布列及數(shù)學(xué)期望.

參考公式:,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形中,點作的垂線交的延長線于點.連結(jié)于點,如圖1,將沿折起,使得點到達點的位置.如圖2.

證明:直線平面

的中點,的中點,且平面平面求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的方程為.以原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求的交點的極坐標(biāo);

2)設(shè)的一條直徑,且不在軸上,直線兩點,直線兩點,求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為t為參數(shù)).以原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos.

1)求曲線C和直線l的直角坐標(biāo)方程;

2)若直線l交曲線CA,B兩點,交x軸于點P,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓經(jīng)過,且右焦點坐標(biāo)為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)A,B為橢圓的左,右頂點,C為橢圓的上頂點,P為橢圓上任意一點(異于A,B兩點),直線AC與直線BP相交于點M,直線BC與直線AP相交于點N,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中;

已知三個論斷:(1)四棱柱是直四棱柱;(2)底面是菱形;(3

以其中兩個論斷作條件,余下一個為結(jié)論,可以得到三個命題,其中有幾個是真命題?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高一、高二、高三年級的學(xué)生人數(shù)之比依次為657,防疫站欲對該校學(xué)生進行身體健康調(diào)查,用分層抽樣的方法從該校高中三個年級的學(xué)生中抽取容量為n的樣本,樣本中高三年級的學(xué)生有21人,則n等于(

A.35B.45C.54D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表為2016年至2019年某百貨零售企業(yè)的線下銷售額(單位:萬元),其中年份代碼年份

年份代碼

1

2

3

4

線下銷售額

95

165

230

310

1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測2020年該百貨零售企業(yè)的線下銷售額;

2)隨著網(wǎng)絡(luò)購物的飛速發(fā)展,有不少顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調(diào)查平臺為了解顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機調(diào)查了55位男顧客、50位女顧客(每位顧客從持樂觀態(tài)度持不樂觀態(tài)度中任選一種),其中對該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有10人、女顧客有20人,能否在犯錯誤的概率不超過0.025的前提下認為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)?

參考公式及數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案