【題目】已知一個12位的正整數(shù)可以被37整除,且只包含數(shù)碼,求這個12為數(shù)的各位數(shù)字之和的所有可能值.
【答案】
【解析】
設滿足
,且,
令,取,
則,其中,,且,
取,
則,且,
設,
則 ,
由,知 ,
易知.故對任意,
.
從而,與中之一模37同余.
由為12位數(shù)知都小于等于4.
令,
則,且,
故,
又,
故,令,
又,故,從而,.
(1)當時,,
下面構造數(shù)滿足條件,
則 ,
取,滿足條件,其中,為高斯函數(shù).
(2)當時,,
若,則,
由下表知,
其中, 表示時的取值.
但,均大于4,矛盾,
若,
則,
由表1知,但,均大于4,矛盾.
故
由對稱性,,
(3)類似(2)知,,
(4)當時,,若,
則,
由表1知,
則,
對,取,
則滿足條件,.
由對稱性,時,取滿足條件,.
(5)當時,類似(4)知,
對,取,
則滿足條件,.
由對稱性,時,取滿足條件,,
綜上,.
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)是定義在上的不恒為零的函數(shù),對于任意實數(shù)滿足: ,, 考查下列結論:① ;②為奇函數(shù);③數(shù)列為等差數(shù)列;④數(shù)列為等比數(shù)列.
以上結論正確的是__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】點A、B分別是橢圓長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓上,且位于軸上方,.
(1)求點P的坐標;
(2)設M是橢圓長軸AB上的一點,M到直線AP的距離等于,求橢圓上的點到點M的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新高考方案的實施,學生對物理學科的選擇成了焦點話題. 某學校為了了解該校學生的物理成績,從,兩個班分別隨機調(diào)查了40名學生,根據(jù)學生的某次物理成績,得到班學生物理成績的頻率分布直方圖和班學生物理成績的頻數(shù)分布條形圖.
(Ⅰ)估計班學生物理成績的眾數(shù)、中位數(shù)(精確到)、平均數(shù)(各組區(qū)間內(nèi)的數(shù)據(jù)以該組區(qū)間的中點值為代表);
(Ⅱ)填寫列聯(lián)表,并判斷是否有的把握認為物理成績與班級有關?
物理成績的學生數(shù) | 物理成績的學生數(shù) | 合計 | |
班 | |||
班 | |||
合計 |
附:列聯(lián)表隨機變量;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓左頂點為M,上頂點為N,直線MN的斜率為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)直線l:與橢圓交于A,C兩點,與y軸交于點P,以線段AC為對角線作正方形ABCD,若.
()求橢圓方程;
()若點E在直線MN上,且滿足,求使得最長時,直線AC的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設橢圓的左、右焦點分別為,點在橢圓上,的面積為.
(1)求橢圓的標準方程;
(2)設圓心在軸上的圓與橢圓在軸的上方有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點,求圓的半徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】年年初,新冠肺炎疫情防控工作全面有序展開.某社區(qū)對居民疫情防控知識進行了網(wǎng)上調(diào)研,調(diào)研成績?nèi)慷荚?/span>分到分之間.現(xiàn)從中隨機選取位居民的調(diào)研成績進行統(tǒng)計,繪制了如圖所示的頻率分布直方圖.
求的值,并估計這位居民調(diào)研成績的中位數(shù);
在成績?yōu)?/span>,的兩組居民中,用分層抽樣的方法抽取位居民,再從位居民中隨機抽取位進行詳談.記為位居民的調(diào)研成績在的人數(shù),求隨機變量的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,過點的直線的參數(shù)方程為(為參數(shù)),直線與曲線相交于兩點.
(Ⅰ)寫出曲線的直角坐標方程和直線的普通方程;
(Ⅱ)若,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com