【題目】動(dòng)點(diǎn)A(x , y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向勻速旋轉(zhuǎn),12秒旋轉(zhuǎn)一周.已知時(shí)間t=0時(shí),點(diǎn)A的坐標(biāo)是( , ),則當(dāng)0≤t≤12時(shí),動(dòng)點(diǎn)A的縱坐標(biāo)y關(guān)于 t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是

【答案】[0,2],[8,12]或(0,2),(8,12)
【解析】t=0時(shí),點(diǎn)A的坐標(biāo)是 ( , ),
∴點(diǎn)A的初始角為30°,
當(dāng)點(diǎn)A轉(zhuǎn)過的角度在[0°,60°]或[240°,360°]時(shí),
動(dòng)點(diǎn)A的縱坐標(biāo)y關(guān)于t(單位:秒)的函數(shù)的單調(diào)遞增,
∵12秒旋轉(zhuǎn)一周,
∴每秒轉(zhuǎn)過的角度是360°÷12=30°,240°÷30=8,
則當(dāng)0≤t≤12時(shí),動(dòng)點(diǎn)A的縱坐標(biāo)y關(guān)于t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是[0,2],[8,12]
所以答案是:[0,2],[8,12]或(0,2),(8,12).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有5個(gè)不同的實(shí)數(shù)解x1 , x2 , x3 , x4 , x5 , h(x)=lg|x﹣4|,則h(x1+x2+x3+x4+x5)等于(
A.3
B.lg12
C.lg20
D.4lg2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是(

A. 的圖像是一條直線

B. 冪函數(shù)的圖像都經(jīng)過點(diǎn)

C. 若冪函數(shù)是奇函數(shù),則是增函數(shù)

D. 冪函數(shù)的圖像不可能出現(xiàn)在第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),函數(shù)

(1)當(dāng)時(shí),解關(guān)于的不等式: ;

(2)若,已知函數(shù)有兩個(gè)零點(diǎn),若點(diǎn), ,其中是坐標(biāo)原點(diǎn),證明: 不可能垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.(本小題滿分14分)已知等比數(shù)列的公比為,首項(xiàng)為,其前項(xiàng)的和為.?dāng)?shù)列的前項(xiàng)的和為, 數(shù)列的前項(xiàng)的和為

,,求的通項(xiàng)公式;當(dāng)為奇數(shù)時(shí),比較的大小; 當(dāng)為偶數(shù)時(shí),若,問是否存在常數(shù)(與n無(wú)關(guān)),使得等式恒成立,若存在,求出的值;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國(guó)際油價(jià)在某一時(shí)間內(nèi)呈現(xiàn)出正弦波動(dòng)規(guī)律:P=Asin(ωπt+ )+60(美元)[t(天),A>0,ω>0],現(xiàn)采集到下列信息:最高油價(jià)80美元,當(dāng)t=150(天)時(shí)達(dá)到最低油價(jià),則ω=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)l為曲線C:y= 在點(diǎn)(1,0)處的切線.
(Ⅰ)求l的方程;
(Ⅱ)證明:除切點(diǎn)(1,0)之外,曲線C在直線l的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若存在,且,使得,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了制作廣告牌,需在如圖所示的鐵片上切割出一個(gè)直角梯形,已知鐵片由兩部分組成,半徑為1的半圓及等腰直角三角形,其中,為裁剪出面積盡可能大的梯形鐵片(不計(jì)損耗),將點(diǎn)放在弧上,點(diǎn)放在斜邊上,且,設(shè).

(1)求梯形鐵片的面積關(guān)于的函數(shù)關(guān)系式;

2)試確定的值,使得梯形鐵片的面積最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案