【題目】已知右焦點(diǎn)為的橢圓)過(guò)點(diǎn),且橢圓關(guān)于

直線(xiàn)對(duì)稱(chēng)的圖形過(guò)坐標(biāo)原點(diǎn).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作直線(xiàn)與橢圓交于點(diǎn) (異于橢圓的左、右頂點(diǎn)),線(xiàn)段的中點(diǎn)為.點(diǎn)是橢圓的右頂點(diǎn).求直線(xiàn)的斜率的取值范圍.

【答案】(1);(2).

【解析】試題分析:

(1)由橢圓過(guò)點(diǎn)可得,有橢圓關(guān)于直線(xiàn)對(duì)稱(chēng)的圖形過(guò)坐標(biāo)原點(diǎn)可得,據(jù)此可得橢圓方程為.

(2)設(shè)橢圓的y軸截距方程為,聯(lián)立直線(xiàn)方程與橢圓方程可得,則,,分類(lèi)討論:①當(dāng)時(shí),;②當(dāng)時(shí),,由均值不等式的結(jié)論可得,且.據(jù)此可得的取值范圍是.

試題解析:

(1)∵橢圓過(guò)點(diǎn).

,

∵橢圓關(guān)于直線(xiàn)對(duì)稱(chēng)的圖形過(guò)坐標(biāo)原點(diǎn),

,

,

由①②得,

∴橢圓的方程為.

(2)依題意,直線(xiàn)過(guò)點(diǎn),且斜率不為零,

∴可設(shè)其方程為.

聯(lián)立方程組消去并整理,

.

設(shè),,

.

,.

①當(dāng)時(shí),;

②當(dāng)時(shí),,

,

,且.

綜合①②,可知直線(xiàn)的斜率的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列所給4個(gè)圖象中,與所給3件事吻合最好的順序?yàn)?( )

我離開(kāi)學(xué)校不久,發(fā)現(xiàn)自己把作業(yè)本忘在教室,于是立刻返回教室里取了作業(yè)本再回家;

我放學(xué)回家騎著車(chē)一路以常速行駛,只是在途中遇到一次交通堵塞,耽擱了一些時(shí)間;

我放學(xué)從學(xué)校出發(fā)后,心情輕松,緩緩行進(jìn),后來(lái)為了趕時(shí)間開(kāi)始加速.

A.(1)(2)(4)B.(4)(1)(2)C.(4)(1)(3)D.(4)(2)(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校選派甲、乙、丙、丁、戊5名學(xué)生代表學(xué)校參加市級(jí)“演講”和“詩(shī)詞”比賽,下面是他們的一段對(duì)話(huà)甲說(shuō):“乙參加‘演講’比賽”;乙說(shuō):“丙參加‘詩(shī)詞’比賽”;丙說(shuō)“丁參加‘演講’比賽”;丁說(shuō):“戊參加‘詩(shī)詞’比賽”戊說(shuō):“丁參加‘詩(shī)詞’比賽”

已知這5個(gè)人中有2人參加演講比賽,3人參加詩(shī)詞比賽,其中有2人說(shuō)的不正確,且參加“演講”的2人中只有1人說(shuō)的不正確.根據(jù)以上信息,可以確定參加“演講”比賽的學(xué)生是

A. 甲和乙 B. 乙和丙 C. 丁和戊 D. 甲和丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),解不等式:

(2)當(dāng)時(shí),存在最小值,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】語(yǔ)文中有回文句,如:上海自來(lái)水來(lái)自海上,倒過(guò)來(lái)讀完全一樣。數(shù)學(xué)中也有類(lèi)似現(xiàn)象,如:88,454,7337,43534等,無(wú)論從左往右讀,還是從右往左讀,都是同一個(gè)數(shù),稱(chēng)這樣的數(shù)為回文數(shù)”!

二位的回文數(shù)有11,22,33,44,55,66,77,88,99,共9個(gè);

三位的回文數(shù)有101,111,121,131,…,969,979,989,999,共90個(gè);

四位的回文數(shù)有1001,1111,1221,…,9669,9779,9889,9999,共90個(gè);

由此推測(cè):11位的回文數(shù)總共有_________個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行下面的程序框圖,如果輸入的,則輸出的( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校900名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18 秒之間,利用分層抽樣的方法抽取其中若干個(gè)樣本,將測(cè)試結(jié)果按如下方式分成五組:第一組[13,14),第二組[14,15),…,第五組[17,18],有關(guān)數(shù)據(jù)見(jiàn)下表:

各組組員數(shù)

各組抽取人數(shù)

[13,14)

54

a

[14,15)

b

8

[15,16)

342

19

[16,17)

288

c

[17,18]

d

(1)求a,b,c,d的值;

(2)若樣本第一組中只有一個(gè)女生,其他都是男生,第五組則只有一個(gè)男生,其他都是女生,現(xiàn)從第一、五組中各抽一個(gè)同學(xué)組成一個(gè)新的組,求這個(gè)新組恰好由一個(gè)男生和一個(gè)女生構(gòu)成的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平面,點(diǎn)在以為直徑的,,點(diǎn)為線(xiàn)段的中點(diǎn),點(diǎn)在弧.

(1)求證:平面平面;

(2)求證:平面平面

(3)設(shè)二面角的大小為,的值.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3).

【解析】試題分析:

(1)ABC中位線(xiàn)的性質(zhì)可得,平面.由線(xiàn)面平行的判斷定理可得平面.結(jié)合面面平行的判斷定理可得平面.

(2)由圓的性質(zhì)可得由線(xiàn)面垂直的性質(zhì)可得,據(jù)此可知平面.利用面面垂直的判斷定理可得平面平面.

(3)以為坐標(biāo)原點(diǎn),所在的直線(xiàn)為軸,所在的直線(xiàn)為軸,建立空間直角坐標(biāo)系.結(jié)合空間幾何關(guān)系計(jì)算可得平面的法向量平面的一個(gè)法向量,則.由圖可知為銳角,故.

試題解析:

(1)證明:因?yàn)辄c(diǎn)為線(xiàn)段的中點(diǎn),點(diǎn)為線(xiàn)段的中點(diǎn),

所以,因?yàn)?/span>平面,平面,所以平面.

因?yàn)?/span>,且平面平面,所以平面.

因?yàn)?/span>平面平面,

所以平面平面.

(2)證明:因?yàn)辄c(diǎn)在以為直徑的上,所以,即.

因?yàn)?/span>平面,平面,所以.

因?yàn)?/span>平面,平面,所以平面.

因?yàn)?/span>平面,所以平面平面.

(3)解:如圖,以為坐標(biāo)原點(diǎn),所在的直線(xiàn)為軸,所在的直線(xiàn)為軸,建立空間直角坐標(biāo)系.

因?yàn)?/span>,,所以,.

延長(zhǎng)于點(diǎn).因?yàn)?/span>,

所以,.

所以,,,.

所以.

設(shè)平面的法向量.

因?yàn)?/span>,所以,即.

,則.

所以.

同理可求平面的一個(gè)法向量.

所以.由圖可知為銳角,所以.

型】解答
結(jié)束】
21

【題目】已知圓,點(diǎn),直線(xiàn).

(1)求與圓相切且與直線(xiàn)垂直的直線(xiàn)方程;

(2)在直線(xiàn)為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿(mǎn)足:對(duì)于圓上任一點(diǎn)都有為一常數(shù),試求所有滿(mǎn)足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C: 的左、右焦點(diǎn)分別為F1、F2,離心率為,直線(xiàn)y=1C的兩個(gè)交點(diǎn)間的距離為

(1)求圓C的方程;

(2)如圖,過(guò)F1、F2作兩條平行線(xiàn)l1、l2C的上半部分分別交于A、B兩點(diǎn),求四邊形ABF2F1面積的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案