【題目】已知x=1是函數(shù)f(x)=ax3-x2+(a+1)x+5的一個極值點.
(1)求函數(shù)f(x)的解析式;
(2)若曲線y=f(x)與直線y=2x+m有三個交點,求實數(shù)m的取值范圍.
【答案】(1)f(x)的解析式為f(x)=x3-x2+2x+5; (2)m的取值范圍為
【解析】試題分析:(I)利用三次函數(shù)在極值點處的導數(shù)為零,即可解得a的值,進而確定函數(shù)的解析式;(II)將兩曲線有三個交點問題,轉(zhuǎn)化為函數(shù)g(x)=f(x)﹣(2x+m)有三個零點問題,利用導數(shù)研究函數(shù)g(x)的單調(diào)性和極值,找到問題的充要條件,列不等式即可解得m的范圍
試題解析:
解:(1)依題意f′(x)=ax2-3x+a+1,
由f′(1)=0得a=1,
∴函數(shù)f(x)的解析式為f(x)=x3-x2+2x+5.
(2)曲線y=f(x)與直線y=2x+m有三個交點,
即x3-x2+2x+5-2x-m=0有三個實數(shù)根,
令g(x)=x3-x2+2x+5-2x-m=x3-x2+5-m,則g(x)有三個零點.
由g′(x)=x2-3x=0得x=0或x=3.
令g′(x)>0得x<0或x>3;令g′(x)<0得0<x<3.
∴函數(shù)g(x)在(-∞,0)上為增函數(shù),在(0,3)上為減函數(shù),在(3,+∞)上為增函數(shù).
∴函數(shù)在x=0處取得極大值,在x=3處取得極小值.
要使g(x)有三個零點,只需 解得 <m<5.
∴實數(shù)m的取值范圍為.
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c滿足:cosAcosC+sinAsinC+cosB= ,且a,b,c成等比數(shù)列,
(1)求角B的大小;
(2)若 + = ,a=2,求三角形ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,若存在實數(shù)x1 , x2 , x3 , x4 滿足f(x1)=f(x2)=f(x3)=f(x4),且x1<x2<x3<x4 , 則 的取值范圍是( )
A.(20,32)
B.(9,21)
C.(8,24)
D.(15,25)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當m=1時,求曲線y=f(x)在點(1,f(1))處的切線斜率;
(2)求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列判斷正確的是( )
A.a=7,b=14,A=30°,有兩解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有兩解
D.a=9,b=10,A=60°,無解
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1= ,an= (n≥2,n∈N).
(1)試判斷數(shù)列 是否為等比數(shù)列,并說明理由;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項和Sn;
(3)設(shè)cn=ansin ,數(shù)列{cn}的前n項和為Tn . 求證:對任意的n∈N* , Tn< .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com