13.若直線的傾斜角為α,則直線的斜率為tanα或不存在.

分析 分$α≠\frac{π}{2}$和$α=\frac{π}{2}$說明直線的斜率的情況.

解答 解:當$α≠\frac{π}{2}$時,直線的斜率為tanα;
當$α=\frac{π}{2}$時,直線的斜率不存在.
故答案為:tanα或不存在.

點評 本題考查直線的斜率,考查了直線的斜率和傾斜角間的關(guān)系,注意垂直于x軸的直線沒有斜率,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)y=cosx-x2在[-$\frac{π}{4}$,$\frac{π}{4}$]上的值域是[$\frac{\sqrt{2}}{2}$-$\frac{{π}^{2}}{16}$,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知兩數(shù)19和89,求中間插入多少個數(shù)時,能使它們與這兩個數(shù)成等差數(shù)列,且這個數(shù)列各項之和為1350.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知圓C:(x-3)2+(y-2)2=2,直線l:(m+1)x+(m-1)y-4m=0.
(1)證明:直線l與圓C相交;
(2)若直線l與圓C相交于M、N,求MN的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.(1)已知l1:3x+2ay-5=0,l2:(3a-1)x-ay-2=0,則使l1∥l2的a的值為-$\frac{1}{6}$.
(2)作直線l:y=x上的點P(2,2),作直線m,若直線1,m與x軸圍成的三角形的面積為2,則直線m的方程為x-2=0或x-2y+2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.直線x=2的傾斜角為90°,斜率為不存在.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.當a=-2時,直線ax+(a+2)y-1=0的傾斜角為0°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知三棱錐P-ABC中,AB=AC=2,∠BAC=90°,PA⊥平面ABC,且PA=2,求這個三棱錐的外接球的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=-x3+ax-4(a∈R),若函數(shù)y=f(x)的圖象在點P(1,f(1))處的切線的傾斜角為$\frac{π}{4}$,則a=(  )
A.2B.-2C.4D.-4

查看答案和解析>>

同步練習冊答案