精英家教網 > 高中數學 > 題目詳情

已知數列{an}中,a1=-1,且 (n+1)an,(n+2)an+1,n 成等差數列.
(Ⅰ)設bn=(n+1)an-n+2,求證:數列{bn}是等比數列;
(Ⅱ)求{an}的通項公式;
(Ⅲ)(僅理科做) 若an-bn≤kn對一切n∈N*恒成立,求實數k的取值范圍.

解:(Ⅰ)證明:,…1分
∵b1=2a1-1+2=-1,…2分(文3分)
∴數列{bn}是等比數列. …4分(文6分)
(Ⅱ)由(Ⅰ)得,即
. …6分(文13分)
(Ⅲ)∵
∴an-bn≤kn,即
,,
則cn 隨著n的增大而減小,…8分
=,
∴n≥5時,dn+1-dn<0,dn+1<dndn隨著n的增大而減小,…10分
則n≥5時,en隨著n的增大而減小. …
∵c1=,c2=,c3=,c4=,c5=,
d1=,d2=0,d3=,d4=,d5=,
∴e1=0,e2=,e3=,e4=,e5=
則e1<e2>e3>e4>e5>….∴e2=最大.
∴實數k的取值范圍k≥. …13分.
分析:(Ⅰ),由b1=2a1-1+2=-1,知,由此能夠證明數列{bn}是等比數列.
(Ⅱ)由,知.由此能求出{an}的通項公式.
(Ⅲ)由,知.設,,,則cn 隨著n的增大而減小,=,所以n≥5時,dn+1-dn<0,dn+1<dndn隨著n的增大而減小,n≥5時,en隨著n的增大而減。 由此能求出實數k的取值范圍.
點評:本題首先考查等差數列、等比數列的基本量、通項,結合含兩個變量的不等式的處理問題,考查運算求解能力,推理論證能力;考查化歸與轉化思想.對數學思維的要求比較高,要求學生理解“存在”、“恒成立”,以及運用一般與特殊的關系進行否定,本題有一定的探索性.綜合性強,難度大,易出錯.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數列{an}的通項公式;
(2)求數列{
2n
an
}
的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=
1
2
,Sn
為數列的前n項和,且Sn
1
an
的一個等比中項為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,2nan+1=(n+1)an,則數列{an}的通項公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習冊答案