在△ABC中,
AD
=2
DC
,
BA
=
a
,
BD
=
b
,
BC
=
c
,則下列等式成立的是( 。
A、
c
=2
b
-
a
B、
c
=2
a
-
b
C、
c
=
3
a
2
-
b
2
D、
c
=
3
b
2
-
a
2
考點(diǎn):向量加減混合運(yùn)算及其幾何意義
專題:平面向量及應(yīng)用
分析:利用向量的三角形法則即可得出.
解答: 解:如圖所示,
AD
=
AB
+
BD
,
DC
=
DB
+
BC
,
AD
=2
DC
,
AB
+
BD
=2(
DB
+
BC
)
,
-
a
+
b
=2(-
b
+
c
)
,
化為
c
=
3
2
b
-
1
2
a

故選:D.
點(diǎn)評(píng):本題考查了向量的三角形法則,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某度假區(qū)以2014年索契冬奧會(huì)為契機(jī),依山修建了高山滑雪場(chǎng).為了適應(yīng)不同人群的需要,從山上A處到山腳滑雪服務(wù)區(qū)P處修建了滑雪賽道A-C-P和滑雪練習(xí)道A-E-P(如圖).已知cos∠ACP=一
5
5
,cos∠APC=
4
5
,cos∠APE=
2
3
,公路AP長(zhǎng)為10(單位:百米),滑道EP長(zhǎng)為6(單位:百米).
(Ⅰ)求滑道CP的長(zhǎng)度;
(Ⅱ)由于C,E處是事故的高發(fā)區(qū),為及時(shí)處理事故,度假區(qū)計(jì)劃在公路AP上找一處D,修建連接道
DC,DE,問DP多長(zhǎng)時(shí),才能使連接道DC+DE最短,最短為多少百米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,方程為x2+y2-4x+2y=0的曲線關(guān)于直線ax-by-1=0對(duì)稱,則
3a+2b
ab
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x+y=
2
與兩坐標(biāo)軸圍成的三角形區(qū)域?yàn)镈,在D內(nèi)任取一點(diǎn)P(x,y),那么使得x2+y2≤1的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-a|(a∈R).
(Ⅰ)若a=2,求不等式f(x)<1的解集;
(Ⅱ)若不等式f(x)+|x+1|≥3在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向邊長(zhǎng)分別為5,6,
13
的三角形區(qū)域內(nèi)隨機(jī)投一點(diǎn)M,則該點(diǎn)M與三角形三個(gè)頂點(diǎn)距離都大于1的概率為( 。
A、1-
π
18
B、1-
π
12
C、1-
π
9
D、1-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={1,m2},集合B={3,9},則“m=3”是“A∩B={9}”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從[0,10]中任取一個(gè)數(shù)x,從[0,6]中任取一個(gè)數(shù)y,則使|x-5|+|y-3|≤4的概率為( 。
A、
1
2
B、
5
9
C、
2
3
D、
5
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面關(guān)于f(x)的判斷:
①y=f(x-2)與y=f(2-x)的圖象關(guān)于直線x=2對(duì)稱;
②若f(x)為偶函數(shù),且f(2+x)=-f(x),則f(x)的圖象關(guān)于直線x=2對(duì)稱.
③設(shè)函數(shù)f(x)=lnx,且x0,x1,x2∈(0,+∞),若x1<x2,則
1
x2
f(x1)-f(x2)
x1-x2

④函數(shù)f(x)=lnx,x0,x1,x2∈(0,+∞),存在x0∈(x1,x2),(x1<x2),使得
1
x0
=
f(x1)-f(x2)
x1-x2

⑤設(shè)函數(shù)f(x)=x2-3x+4,g(x)=
1
2
x2+4lnx+a
.對(duì)于?x1∈[1,e],總?x2∈[1,e],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍為[1,
5
4
]

其中正確的判斷是
 
(把你認(rèn)為正確的判斷都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案