【題目】設(shè),又是一個常數(shù),已知時, 只有一個實(shí)根,當(dāng)時, 有三個相異實(shí)根,給出下列命題:

有一個相同的實(shí)根;

有一個相同的實(shí)根;

的任一實(shí)根大于的任一實(shí)根;

的任一實(shí)根小于的任一實(shí)根.

其中正確命題的個數(shù)為( )

A. 3 B. 2 C. 1 D. 0

【答案】A

【解析】根據(jù)三次函數(shù),滿足對是一個常數(shù),當(dāng)時, 只有一個實(shí)根,當(dāng)時, 有三個相異實(shí)根這樣的條件,滿足畫出函數(shù)的模擬圖象如圖:

,

當(dāng)時, 只有一個實(shí)數(shù)根;

當(dāng)時, 有三個相異實(shí)根,故函數(shù)即有極大值,又有極小值,且極小值為0,極大值為4,

有一個相同的實(shí)數(shù)根,即極大值點(diǎn),故(1)正確.

有一個相同的實(shí)根,即極小值點(diǎn),故(2)正確;

有一實(shí)根且函數(shù)最小的零點(diǎn),

3個實(shí)根均大于函數(shù)的最小零點(diǎn),故(3)錯誤;

有一實(shí)根且小于函數(shù)最小零點(diǎn),

有三個實(shí)根均大于函數(shù)最小的零點(diǎn),故(4)正確;

所以A選項(xiàng)正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=2,an+1= Sn(n=1,2,3,…).
(1)證明:數(shù)列{ }是等比數(shù)列;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P為橢圓 =1上的一個點(diǎn),M,N分別為圓(x+3)2+y2=1和圓(x﹣3)2+y2=4上的點(diǎn),則|PM|+|PN|的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組為了研究某品牌智能手機(jī)在正常使用情況下的電池供電時間,分別從該品牌手機(jī)的甲、乙兩種型號中各選取部進(jìn)行測試,其結(jié)果如下:

甲種手機(jī)供電時間(小時)

乙種手機(jī)供電時間(小時)

(1)求甲、乙兩種手機(jī)供電時間的平均值與方差,并判斷哪種手機(jī)電池質(zhì)量好;

(2)為了進(jìn)一步研究乙種手機(jī)的電池性能,從上述部乙種手機(jī)中隨機(jī)抽取部,記所抽部手機(jī)供電時間不小于小時的個數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有4個不同的小球,4個不同的盒子,現(xiàn)要把球全部放進(jìn)盒子內(nèi).
(1)恰有1個盒子不放球,共有多少種方法?
(2)恰有2個盒子不放球,共有多少種方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來我國電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇,與此同時,相關(guān)管理部門推出了針對電商商品和服務(wù)的評價(jià)體系.現(xiàn)從評價(jià)系統(tǒng)中選出200次成功交易,并對其評價(jià)進(jìn)行統(tǒng)計(jì),對商品好評率為,對服務(wù)好評率為,其中對商品和服務(wù)都做出好評的交易為80次.

1)是否可以在犯錯誤率不超過0.1%的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān)?

2)若針對商品的好評率,采用分層抽樣的方式從這200次交易中取出5次交易,并從中選擇兩次交易進(jìn)行客戶回訪,求只有一次好評的概率.

注:1.

2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中點(diǎn).

1求證:平面AB1E平面B1BCC1;

2求證:平面AB1E.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an+1﹣2an}是公比為2的等比數(shù)列,其中a1=1,a2=4.
(1)證明:數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn;
(3)記Cn= (n≥2),證明: n +…+ ≤1﹣( n1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)證明當(dāng)時,關(guān)于的不等式恒成立;

(Ⅲ)若正實(shí)數(shù)滿足,證明.

查看答案和解析>>

同步練習(xí)冊答案