【題目】在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中點.
(1)求證:平面AB1E⊥平面B1BCC1;
(2)求證:平面AB1E.
【答案】(1)見解析;(2)見解析.
【解析】(1)在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC.
因為AE平面ABC,
所以CC1AE,
因為AB=AC,E為BC的中點,
所以AEBC.
因為BC在平面B1BCC1內(nèi),CC1在平面B1BCC1內(nèi),且BC∩CC1=C,
所以AE平面B1BCC1.
因為AE在平面AB1E內(nèi),
所以平面AB1E平面B1BCC1.
(2)連接A1B,設(shè)A1B∩AB1=F,連接EF.
在直三棱柱ABC-A1B1C1中,四邊形AA1B1B為平行四邊形,
所以F為A1B的中點.
又因為E是BC的中點,
所以EF∥A1C.
因為EF在平面AB1E內(nèi),A1C不在平面AB1E內(nèi),
所以A1C∥平面AB1E.
【方法點晴】本題主要考查線面平行的判定定理以及線面垂直、面面垂直的判定,屬于難題.證明線面平行的常用方法:
①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.
②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.
本題(2)是就是利用方法①證明的.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=,AC=3, BC=2,P是△ABC內(nèi)的一點.
(1)若P是等腰直角三角形PBC的直角頂點,求PA的長;
(2)若∠BPC=,設(shè)∠PCB=θ,求△PBC的面積S(θ)的解析式,并求S(θ)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x.
(1)求曲線y=f(x)在點x=2處的切線方程;
(2)若過點A(1,m)(m≠﹣2)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),又是一個常數(shù),已知或時, 只有一個實根,當(dāng)時, 有三個相異實根,給出下列命題:
①和有一個相同的實根;
②和有一個相同的實根;
③的任一實根大于的任一實根;
④的任一實根小于的任一實根.
其中正確命題的個數(shù)為( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,分別是橢圓的左、右焦點.
(1)若點是第一象限內(nèi)橢圓上的一點, ,求點的坐標;
(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,以為極點, 軸正半軸為極軸建立極坐標系,圓的極坐標方程為,直線的參數(shù)方程為為參數(shù)),直線和圓交于兩點, 是圓上不同于的任意一點.
(1)求圓心的極坐標;
(2)求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), 已知曲線y=f(x)
在處的切線與直線垂直。
(1) 求的值;
(2) 若對任意x≥1,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx的導(dǎo)函數(shù)圖象關(guān)于直線x=2對稱
(1)求b值;
(2)若f(x)在x=t處取得極小值,記此極小值為g(t),求g(t)的定義域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中, 為自然對數(shù)的底數(shù), …).
(1)若函數(shù)僅有一個極值點,求的取值范圍;
(2)證明:當(dāng)時,函數(shù)有兩個零點, ,且.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com