【題目】某研究小組為了研究某品牌智能手機(jī)在正常使用情況下的電池供電時(shí)間,分別從該品牌手機(jī)的甲、乙兩種型號(hào)中各選取部進(jìn)行測(cè)試,其結(jié)果如下:

甲種手機(jī)供電時(shí)間(小時(shí))

乙種手機(jī)供電時(shí)間(小時(shí))

(1)求甲、乙兩種手機(jī)供電時(shí)間的平均值與方差,并判斷哪種手機(jī)電池質(zhì)量好;

(2)為了進(jìn)一步研究乙種手機(jī)的電池性能,從上述部乙種手機(jī)中隨機(jī)抽取部,記所抽部手機(jī)供電時(shí)間不小于小時(shí)的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

【答案】(1)甲種手機(jī)電池質(zhì)量更好(2)

【解析】試題分析:(1)由平均值公式和方差公式分別求平均值與方差,得==

=甲的穩(wěn)定性更好,甲質(zhì)量更好。(2)部乙種手機(jī)供電時(shí)間不小于小時(shí)的有部,小于小時(shí)的有部,所以由求的分布列和期望。

試題解析:(1)甲的平均值,

乙的平均值,

甲的方差

乙的方差

因?yàn)榧、乙兩種手機(jī)的平均數(shù)相同,甲的方差比乙的方差小,所以認(rèn)為甲種手機(jī)電池質(zhì)量更好.

(2)部乙種手機(jī)供電時(shí)間不小于小時(shí)的有部,小于小時(shí)的有部,所以得可能取值為,則,

得分布列為

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大;
(2)求sinB+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2 ,PA=4且E為PB的中點(diǎn).
(1)求證:CE∥平面PAD;
(2)求直線CE與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)y= cosx的圖象,需將函數(shù)y= sin(2x+ )的圖象上所有的點(diǎn)的變化正確的是(
A.橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再向左平行移動(dòng) 個(gè)單位長(zhǎng)度
B.橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變),再向右平行移動(dòng) 個(gè)單位長(zhǎng)度
C.橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向左平行移動(dòng) 個(gè)單位長(zhǎng)度
D.橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再向右平行移動(dòng) 個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次購(gòu)物抽獎(jiǎng)活動(dòng)中,假設(shè)某10張券中有一等獎(jiǎng)券1張,可獲價(jià)值50元的獎(jiǎng)品;有二等獎(jiǎng)券3張,每張可獲價(jià)值10元的獎(jiǎng)品;其余6張沒有獎(jiǎng),某顧客從此10張券中任抽2張,求:
(Ⅰ)該顧客中獎(jiǎng)的概率;
(Ⅱ)該顧客獲得的獎(jiǎng)品總價(jià)值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子A和B中裝有若干個(gè)均勻的紅球和白球,從A中摸出一個(gè)紅球的概率是 ,從B中摸出一個(gè)紅球的概率為p.
(1)從A中又放回的摸球,每次摸出一個(gè),共摸5次 ①恰好有3次摸到紅球的概率;
②第一次、第三次、第五次摸到紅球的概率.
(2)若A、B兩個(gè)袋子中的球之比為12,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是 ,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為等腰梯形, ,將沿折起,使得平面平面的中點(diǎn),連接 (如圖2).

(1)求證: ;

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1+an= ,n∈N*
(Ⅰ)求a2 , a3 , a4
(Ⅱ)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),橢圓的左焦點(diǎn)為,右焦點(diǎn)為,點(diǎn)是橢圓上位于軸上方的動(dòng)點(diǎn),且,直線與直線分別交于兩點(diǎn)

1)求橢圓的方程及線段的長(zhǎng)度的最小值;

2是橢圓上一點(diǎn),當(dāng)線段的長(zhǎng)度取得最小值時(shí),求的面積的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案