在平面直角坐標(biāo)系中,曲線經(jīng)過(guò)旋轉(zhuǎn)或平移所產(chǎn)生的新雙曲線與原雙曲線具有相同的離心率和焦距,稱它們?yōu)橐唤M“任性雙曲線”;例如將等軸雙曲線繞原點(diǎn)逆時(shí)針轉(zhuǎn)動(dòng),就會(huì)得到它的一條“任性雙曲線”;根據(jù)以上材料可推理得出雙曲線的焦距為( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年河北唐山市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
在三棱錐中,,G為的重心,過(guò)點(diǎn)G作三棱錐的一個(gè)截面,使截面平行于直線PB和AC,則截面的周長(zhǎng)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省增城市高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知圓的圓心坐標(biāo)為, 直線與圓相交于、兩點(diǎn),.
(1)求圓的方程;
(2)若, 過(guò)點(diǎn)作圓的切線, 切點(diǎn)為,記, 點(diǎn)到直線的距離為, 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年廣東省增城市高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
的值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
命題: ;命題:解集非空.
若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
有下列四個(gè)命題:
①“若a2+b2=0,則a,b全為0”的逆否命題;
②“全等三角形的面積相等”的否命題;
③“若,則有實(shí)根”的逆否命題;
④“矩形的對(duì)角線相等”的逆命題。
其中真命題為( )
A、①② B、①③ C、②③ D、③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖(1),為等邊三角形,是以為直角頂點(diǎn)的等腰直角三角形且,為線段中點(diǎn),將沿折起(如圖2),使得線段的長(zhǎng)度等于,對(duì)于圖二,完成以下各小題:
(圖1) (圖2)
(1)證明:平面;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點(diǎn),使得平面與平面垂直?若存在,請(qǐng)求出線段的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年福建省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
經(jīng)過(guò)點(diǎn),且與雙曲線有相同漸近線的雙曲線方程是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年浙江省衢州市五校高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
要得到函數(shù)的圖象,可由函數(shù)的圖像( )
A.向左平移個(gè)長(zhǎng)度單位 B.向右平移個(gè)長(zhǎng)度單位
C.向左平移個(gè)長(zhǎng)度單位 D.向右平移個(gè)長(zhǎng)度單位
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com