【題目】2019年9月28日中國女排在世界杯第10輪比賽中,以的比分戰(zhàn)勝塞爾維亞女排,從而在本次女排世界杯中取得10連勝,提前一輪衛(wèi)冕世界杯冠軍.世界杯是單循環(huán)賽制,中國女排要和11個對手輪番對決,比賽中以或取勝的球隊積3分,負隊積0分,而在比賽中以取勝的球隊積2分,負隊積1分,通過最終的總積分來決定最后的名次歸屬.
下某網(wǎng)站上整理了2003年以來中國隊與世界女排強隊的50場比賽勝負情況如下表.
(1)現(xiàn)從中國隊與美國女排及俄羅斯女排的比賽視頻中各調(diào)取1場比賽進行觀看,求至少有一場是中國隊以3:0獲勝的比賽的概率;
(2)若根據(jù)表中數(shù)據(jù)進行推斷:
①求中國隊與巴西隊比賽獲得的積分期望;
②預(yù)測中國隊、巴西、俄羅斯、美國這四支強隊進行單循環(huán)賽時中國隊獲得總積分的期望.
【答案】(1);(2)①;②.
【解析】
(1)根據(jù)表中數(shù)據(jù)可計算基本事件的總數(shù)和隨機事件中含有的基本事件的總數(shù),從而可得所求的概率.
(2)根據(jù)表中數(shù)據(jù)可得中國隊與巴西隊比賽結(jié)果為:得3分的次數(shù)為1次,得2分的次數(shù)為2次, 得1分的次數(shù)為3次,得0分的次數(shù)為1次,計算出相應(yīng)的概率(頻率)可得隨機變量的分布列.同理可得與俄羅斯比賽獲得積分的隨機變量、與美國比賽獲得積分的隨機變量的分布列,再計算出各自的數(shù)學(xué)期望后可得總積分的期望.
解:(1)記至少有一場是中國隊3∶0獲勝為事件,
則.
(2)①獲得的積分隨機變量可能為0,1,2,3,
則由表格可知:,,,,
所以隨機變量的分布列為
0 | 1 | 2 | 3 | |
所以期望為.
②設(shè)與俄羅斯比賽獲得積分的隨機變量為,則分布列為
0 | 2 | 3 | |
所以期望為.
設(shè)與美國比賽獲得積分的隨機變量為,則分布列為
0 | 1 | 2 | 3 | |
所以期望為,
所以總積分的期望為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,,,,平面截長方體得到一個矩形,且,.
(1)求截面把該長方體分成的兩部分體積之比;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為圓上一點,過點作軸的垂線交軸于點,點滿足
(1)求動點的軌跡方程;
(2)設(shè)為直線上一點,為坐標(biāo)原點,且,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若在內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)有兩個極值點分別為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù),,其中.
(1)若函數(shù)的圖像過點,求實數(shù)和的值;
(2)若,試判斷函數(shù)在上的單調(diào)性并證明;
(3)設(shè)函數(shù),若對每一個不小于3的實數(shù),都恰有一個小于3的實數(shù),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè)是的極值點.求,并求的單調(diào)區(qū)間;
(2)證明:當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,曲線C:就是其中之一(如圖).給出下列三個結(jié)論:
①曲線C恰好經(jīng)過6個整點(即橫、縱坐標(biāo)均為整數(shù)的點);
②曲線C上任意一點到原點的距離都不超過;
③曲線C所圍成的“心形”區(qū)域的面積小于3.
其中,所有正確結(jié)論的序號是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的方程為,圓與軸相切于點,與軸正半軸相交于、兩點,且,如圖1.
(1)求圓的方程;
(2)如圖1,過點的直線與橢圓相交于、兩點,求證:射線平分;
(3)如圖2所示,點、是橢圓的兩個頂點,且第三象限的動點在橢圓上,若直線與軸交于點,直線與軸交于點,試問:四邊形的面積是否為定值?若是,請求出這個定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,點在線段上,,是線段的中點,且三棱錐的體積是四棱錐體積的.
(1)若是的中點,證明:平面平面;
(2)若平面,求二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com