已知橢圓與雙曲線有共同的焦點,且過點P(2,3),求雙曲線的漸近線及橢圓的方程.
【答案】分析:先把曲線的標準標準方程,其漸近線方程是 ,整理后就得到雙曲線的漸近線方程.利用橢圓與雙曲線有共同的焦點F1(-2,0),F(xiàn)2(2,0),設出橢圓方程,再利用點P(2,3)適合橢圓方程,就可求出橢圓的方程.
解答:解:雙曲線的標準形式為,
其漸近線方程是,
整理得雙曲線的漸近線為:x±y=0.
由共同的焦點F1(-2,0),F(xiàn)2(2,0),可設橢圓方程為 ,
點P(2,3)在橢圓上,
,
∴a2=16,b2=12,
所以橢圓方程為:
點評:本題考查本題考查雙曲線的標準方程,以及橢圓的標準方程的求法,令標準方程中的“1”為“0”即可求出漸近線方程.在求雙曲線與橢圓的標準方程時,一定要先分析焦點所在位置,再設方程,避免出錯.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線與橢圓
x2
4
+y2=1
共焦點,它們的離心率之和為
3
3
2

(1)求橢圓與雙曲線的離心率e1、e2
(2)求雙曲線的標準方程與漸近線方程;
(3)已知直線l:y=
1
2
x+m
與橢圓有兩個交點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的中心在原點O,其中一條準線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點.
(1)求此雙曲線的標準方程;
(2)(普通中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,試問:是否存在實數(shù)k,使得以弦AB為直徑的圓過點O?若存在,求出k的值,若不存在,請說明理由.
(重點中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,C是直線L1:y=mx+6上任一點(A、B、C三點不共線)試問:是否存在實數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線和橢圓有相同的焦點,兩曲線在第一象限內的交點為,橢圓軸負半軸交于點,且三點共線,分有向線段的比為,又直線與雙曲線的另一交點為,若

(1)求橢圓的離心率;

(2)求雙曲線和橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省三明九中高二(上)第二次月考數(shù)學試卷(美術班)(解析版) 題型:填空題

已知雙曲線與橢圓共焦點,它們的離心率之和為;
(1)求橢圓與雙曲線的離心率e1、e2;
(2)求雙曲線的標準方程與漸近線方程;
(3)已知直線與橢圓有兩個交點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2005-2006學年浙江省溫州市高二(上)期末數(shù)學試卷(解析版) 題型:解答題

已知雙曲線的中心在原點O,其中一條準線方程為,且與橢圓有共同的焦點.
(1)求此雙曲線的標準方程;
(2)(普通中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,試問:是否存在實數(shù)k,使得以弦AB為直徑的圓過點O?若存在,求出k的值,若不存在,請說明理由.
(重點中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,C是直線L1:y=mx+6上任一點(A、B、C三點不共線)試問:是否存在實數(shù)k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案