若點P在三個頂點坐標分別為C(0,0),A(0,2
3
),B(2,0)的△ABC內運動,則動點P到頂點A的距離|PA|<2
3
的概率為( 。
A、
3
6
B、
3
3
C、
3
6
π
D、
3
3
π
考點:幾何概型
專題:計算題,概率與統(tǒng)計
分析:分別求出以A為圓心,AO為半徑的圓落在△ABC內的面積、△ABC的面積,利用幾何概型的概率公式即可得到結論.
解答: 解:由題意,tanA=
2
2
3
=
3
3
,∴A=
π
6
,
以A為圓心,AO為半徑的圓落在△ABC內的面積為
1
2
•2
3
π
6
•2
3
=π,
△ABC的面積為
1
2
•2•2
3
=2
3
,
∴動點P到頂點A的距離|PA|<2
3
的概率為
π
2
3
=
3
6
π.
故選:C.
點評:本題主要考查幾何概型的概率計算,根據(jù)面積公式求出對應區(qū)域的面積是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

小樂與小波在學了變量的相關性之后,兩人約定回家去利用自己各自記錄的6-10歲的身高記錄作為實驗數(shù)據(jù),進行回歸分析,探討年齡x(歲)與身高y(cm)之間的線性相關性.經(jīng)計算小樂與小波求得的線性回歸直線分別為l1,l2,在認真比較后,兩人發(fā)現(xiàn)他們這五年身高的平均值都為110cm,而且小樂的五組實驗數(shù)據(jù)均滿足所求的直線方程,小波則只有兩組實驗數(shù)據(jù)滿足所求直線方程.下列說法錯誤的是( 。
A、直線l1,l2一定有公共點(8,110)
B、在兩人的回歸分析中,小樂求得的線性相關系數(shù)r=1,小波求得的線性相關系數(shù)r∈(0,1)
C、在小樂的回歸分析中,他認為x與y之間完全線性相關,所以自己的身高y(cm)與年齡x(歲)成一次函數(shù)關系,利用l1可以準確預測自己20歲的身高
D、在小波的回歸分析中,他認為x與y之間不完全線性相關,所以自己的身高y(cm)與年齡x(歲)成相關關系,利用l2只可以估計預測自己20歲的身高

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果執(zhí)行如圖的程序框圖,那么輸出的S=
2013
2014
,那么判斷框內是( 。
A、k≤2013?
B、k≤2014?
C、k≥2013?
D、k≥2014?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P的x坐標恒為0,y坐標恒為2,則動點P的軌跡是( 。
A、平面B、直線
C、不是平面也不是直線D、以上都不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出如下四個命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題p:“
x
x-1
≥0”則¬p:“
x
x-1
<0”
③對分類變量X與Y的隨機變量K2的觀測值k來說,k越小,判斷“X與Y有關系”的把握越大;
④“x>0”是“x+
1
x
≥2”的充分必要條件.
其中正確的命題個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

先后拋擲一枚骰子,記向上的點數(shù)為a,b.事件A:點(a,b)落在圓x2+y2=12內;事件B:f(a)<0,其中函數(shù)f(x)=x2-(2t+1)x+t(t+1),t為常數(shù).已知P(B)>0
(1)求P(A);
(2)當t=
1
2
時,求P(B);
(3)如A、B同時發(fā)生的概率P(AB)=
1
36
,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
y≤x
x+ay≤4
y≥1
,若z=3x+y的最大值為16,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,公差為d.已知S2,S3+1,S4成等差數(shù)列.
(Ⅰ)求d的值;
(Ⅱ)若a1,a2,a5成等比數(shù)列,求
an+1
2(Sn+4)
(n∈N*)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在[20,80)(單位:mg/100mL)之間,屬于酒后駕車,血液酒精濃度在80mg/100mL(含80)以上時,屬醉酒駕車.”某市交警在該市一交通崗前設點對過往的車輛進行抽查,經(jīng)過一晚的抽查,共查出酒后駕車者60名,圖甲是用酒精測試儀對這60名酒后駕車者血液中酒精濃度進行檢測后依所得結果畫出的頻率分布直方圖
(1)若血液酒精濃度在[50,60)和[60,70)的分別有9人和6人,請補全頻率分布直方圖.圖乙的程序框圖是對這60名酒后駕車者血液的酒精濃度做進一步的統(tǒng)計,求出圖乙輸出的S的值,并說明S的統(tǒng)計意義;(圖乙中數(shù)據(jù)mi與fi分別表示圖甲中各組的組中點值及頻率)
(2)本次行動中,吳、李兩位先生都被酒精測試儀測得酒精濃度屬于70~90mg/100mL的范圍,但他倆堅稱沒喝那么多,是測試儀不準,交警大隊隊長決定在被酒精測試儀測得酒精濃度屬于70~90mg/100mL范圍的酒后駕車者中隨機抽出2人抽血檢驗,設ξ為吳、李兩位先生被抽中的人數(shù),求ξ的分布列,并求吳、李兩位先生至少有1人被抽中的概率.

查看答案和解析>>

同步練習冊答案