【題目】在甲、乙兩個盒子中分別裝有標(biāo)號為1,2,34的四個球,現(xiàn)從甲、乙兩個盒子中各取出1個球,每個球被取出的可能性相等.

1)求取出的兩個球上標(biāo)號為相同數(shù)字的概率;

2)若兩人分別從甲、乙兩個盒子中各摸出一球,規(guī)定:兩人誰摸出的球上標(biāo)的數(shù)字大誰就獲勝(若數(shù)字相同則為平局),這樣規(guī)定公平嗎?請說明理由.

【答案】12)這樣規(guī)定公平,詳見解析

【解析】

1)利用列舉法求得基本事件的總數(shù),利用古典概型的概率計算公式,即可求解;

2)利用古典概型及其概率的計算公式,求得的概率,即可得到結(jié)論.

由題意,設(shè)從甲、乙兩個盒子中各取1個球,其數(shù)字分別為x、y.

表示抽取結(jié)果,可得,則所有可能的結(jié)果有16種,

1)設(shè)取出的兩個球上的標(biāo)號相同為事件A,則,

事件A4個基本事件組成,故所求概率.

2)設(shè)甲獲勝為事件B,乙獲勝為事件C,

,.

可得,

即甲獲勝的概率是,乙獲勝的概率也是,所以這樣規(guī)定公平.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2012年的自主招生考試成績中隨機(jī)抽取名中學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.

組號

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;

(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l經(jīng)過直線2x+y-5=0x-2y=0的交點P

1)若直線l平行于直線l14x-y+1=0,求l的方程;

2)若直線l垂直于直線l14x-y+1=0,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的兩條對角線相交于點, 邊所在直線的方程為,點邊所在的直線上.

(Ⅰ)求邊所在直線的方程;

(Ⅱ)求矩形外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足,數(shù)列滿足,,且.

1)求數(shù)列的通項公式;

2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;

3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的方程為,直線的方程為,點在直線上,過點作圓的切線,切點為.

1)若過點的坐標(biāo)為,求切線方程;

2)求四邊形面積的最小值;

3)求證:經(jīng)過三點的圓必過定點,并求出所有定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計劃種植甲、乙兩種水果,已知單位面積種植甲水果的經(jīng)濟(jì)價值是種植乙水果經(jīng)濟(jì)價值的5倍,但種植甲水果需要有輔助光照.半圓周上的處恰有一可旋轉(zhuǎn)光源滿足甲水果生長的需要,該光源照射范圍是,在直徑上,且

1)若米,求的長;

2)設(shè), 求該空地產(chǎn)生最大經(jīng)濟(jì)價值時種植甲種水果的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的導(dǎo)函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對數(shù)的底)上有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)觀測,某公路段在某時段內(nèi)的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間有函數(shù)關(guān)系:

1)在該時段內(nèi),當(dāng)汽車的平均速度為多少時車流量最大?最大車流量為多少?(精確到0.01)

2)為保證在該時段內(nèi)車流量至少為10千輛/小時,則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

同步練習(xí)冊答案