某單位N名員工參加“社區(qū)低碳你我他”活動.他們的年齡在25歲至50歲之間.按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.下表是年齡的頻率分布表.
區(qū)間 [25,30) [30,35) [35,40) [40,45) [45,50]
人數(shù) 25 a b
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動,求恰有1人在第3組的概率.
考點(diǎn):古典概型及其概率計(jì)算公式,頻率分布直方圖
專題:圖表型,概率與統(tǒng)計(jì)
分析:(1)根據(jù)小矩形的高=
頻數(shù)
組距
,故頻數(shù)比等于高之比,由此可得a、b的值;
(2)計(jì)算分層抽樣的抽取比例為
6
150
=
1
25
,用抽取比例乘以每組的頻數(shù),可得每組抽取人數(shù);
(3)利用列舉法寫出從6人中隨機(jī)抽取2人的所有基本事件,分別計(jì)算總個數(shù)與恰有1人在第3組的個數(shù),根據(jù)古典概型概率公式計(jì)算.
解答: 解:(1)由頻率分布直方圖可知,[25,30)與[30,35)兩組的人數(shù)相同,
∴a=25人.
b=25×
0.08
0.02
=100
人.
總?cè)藬?shù)N=
25
0.02×5
=250
人.
(2)因?yàn)榈?,2,3組共有25+25+100=150人,利用分層抽樣在150名員工中抽取6人,每組抽取的人數(shù)分別為:
第1組的人數(shù)為
25
150
=1
,
第2組的人數(shù)為
25
150
=1
,
第3組的人數(shù)為
100
150
=4
,
∴第1,2,3組分別抽取1人,1人,4人.
(3)由(2)可設(shè)第1組的1人為A,第2組的1人為B,第3組的4人分別為C1,C2,C3,C4,則從6人中抽取2人的所有可能結(jié)果為:
(A,B),(A,C1),(A,C2),(A,C3),(A,C4),(B,C1),(B,C2),(B,C3),(B,C4),(C1,C2),(C1,C3),(C1,C4),(C2,C3),(C2,C4),(C3,C4),共有15種.
其中恰有1人年齡在第3組的所有結(jié)果為:(A,C1),(A,C2),(A,C3),(A,C4),(B,C1),(B,C2),(B,C3),(B,C4),共有8種.
所以恰有1人年齡在第3組的概率為
8
15
點(diǎn)評:本題考查了頻率分布直方圖及古典概型的概率計(jì)算,解答此類題的關(guān)鍵是讀懂頻率分布直方圖的數(shù)據(jù)含義,小矩形的高=
頻數(shù)
組距
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},Tn為其前n項(xiàng)和,且Tn+
1
2
an=1.
(1)求a1,a2,a3,并猜想{an}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+2x+a
x
,x∈[1,+∞)

(1)當(dāng)a=4時,求函數(shù)f(x)的最小值;
(2)解關(guān)于x的不等式f(x)>a+3;
(3)若對任意x∈[1,+∞),f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定義域?yàn)閇0,1].
(1)求g(x)的解析式;
(2)求g(x)的值域;
(3)是否存在實(shí)數(shù)t,若對任意的x1∈[0,1],都存在x2∈[t,t+1]使得g(x1)=f(x2)-3成立,若存在求出t的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1+1nx
x

(1)求f(x)的最大值;
(2)若對所有x≥1都有f(x)≥
k
x+1
,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2,g(x)=x-1.
(1)若不等式f(x)>bg(x)對任意的實(shí)數(shù)x恒成立,求實(shí)數(shù)b的取值范圍;
(2)設(shè)F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c.已知bcosA-2ccosB=2bcosC-acosB.
(1)求
sinC
sinA
的值;
(2)若cosB=
1
4
,b=2,△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在矩形ABCD中,AB=
3
,BC=1,E是CD上一點(diǎn),且
AE
AB
=1,則
AE
AC
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式
x2
4
+3y2
xy
k
對任意的正數(shù)x,y恒成立,則正數(shù)k的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案