某幾何體的三視圖如圖,則它的體積是
 

考點(diǎn):由三視圖求面積、體積
專(zhuān)題:空間位置關(guān)系與距離
分析:由已知中的三視圖可得該幾何體是一個(gè)四棱柱挖掉一個(gè)圓錐形成的組合體,分別求出棱柱和圓錐底面面積和高,代入可得答案.
解答: 解:由已知中的三視圖可得該幾何體是一個(gè)四棱柱挖掉一個(gè)圓錐形成的組合體,
棱柱是一個(gè)棱長(zhǎng)為2的正方體,故V=8;
圓錐的底面直徑為2,故底面面積S=π,高h(yuǎn)=2,故V=
3
,
故組合體的體積為:8-
3

故答案為:8-
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是由三視圖求體積,其中根據(jù)已知的三視圖判斷出幾何體的形狀是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,A={(x,y)|x2+y2≤1},B={(x,y)|x≤4,y≥0,3x-4y≥0}則P={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的區(qū)域的面積為( 。
A、6B、6+π
C、12+πD、18+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=2sin(2x+
π
3
)的圖象平移后所得的圖象對(duì)應(yīng)的函數(shù)為y=cos2x,則進(jìn)行的平移是( 。
A、向右平移
π
12
個(gè)單位
B、向左平移
π
12
個(gè)單位
C、向右平移
π
6
個(gè)單位
D、向左平移
π
6
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

工廠生產(chǎn)某種電子元件,假設(shè)生產(chǎn)一件正品,可獲利200元;生產(chǎn)一件次品,則損失100元.已知該廠制造電子元件的過(guò)程中,次品率P與日產(chǎn)量x的函數(shù)關(guān)系是P=
3x
4x+32
(x∈N*
(1)將該產(chǎn)品的日盈利額T(元)表示為日產(chǎn)量x(件)的函數(shù);
(2)為獲得最大利潤(rùn),該廠的日產(chǎn)量應(yīng)定為多少件?并求出最大的利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(ωx-
π
3
)(ω>0)的最小正周期為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)將函數(shù)f(x)的圖象向左平移
π
6
個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象.求y=g(x)在區(qū)間[0,10π]上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式
kx2+kx+6
x2+x+2
>2
對(duì)任意的x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)F(1,0),M點(diǎn)在x軸上,點(diǎn)P在y軸上,且
MN
=2
MP
,PM⊥PF,當(dāng)點(diǎn)P在y軸上運(yùn)動(dòng).
(1)求點(diǎn)N的軌跡C的方程.
(2)設(shè)Q為直線x+1=0上的動(dòng)點(diǎn),過(guò)Q作C的兩條切線l1,l2,切點(diǎn)分別為A與B
     ①證明:l1⊥l2
     ②證明:直線AB過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=|x-1|-|x+2|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖一輛汽車(chē)在一條水平的公路上向正西行駛,到A處時(shí)測(cè)得公路北側(cè)遠(yuǎn)處一山頂D在西偏北15°的方向上,行駛5km后到達(dá)B處,測(cè)得此山頂在西偏北25°的方向上,仰角為8°,求高CD(精確到1m)

參考數(shù)據(jù):sin15°=0.259,sin8°=0.139,sin10°=0.174,sin25°=0.423,tan15°=0.268,tan8°=0.141,tan10°=0.176,tan25°=0.466.

查看答案和解析>>

同步練習(xí)冊(cè)答案