選修4-1:幾何證明選講
如圖,⊙O是△ABC的外接圓,AB=AC,延長BC到點(diǎn)D,使得CD=AC,連接AD交⊙O于點(diǎn)E,連接BE.
求證:(1)BE=DE;
(2)∠D=∠ACE.

【答案】分析:(1)直接根據(jù)CD=AC,得到∠D=∠DAC,再結(jié)合∠DAC=∠EBC即可得到結(jié)論.
(2)先根據(jù)條件把問題轉(zhuǎn)化為證BE平分∠ABC,即證∠ABE=∠DBE,由已知中AB=AC、CD=AC,結(jié)合圓周角定理,我們不難找出一系列角與角相等關(guān)系,由此不難得到結(jié)論.
解答:證明:(1)因?yàn)镃D=AC,所以∠D=∠DAC;
又∠DAC=∠EBC,∴∠D=∠EBC
∴BE=DE.
(2)因?yàn)椤螪=∠DAC,
所以∠ACB=2∠DAC=2∠D,
又∠ACB=∠EBC,所以∠ACB=2∠EBC,
因?yàn)锳B=AC,所以∠ACB=∠ABC,
所以∠ABC=2∠EBC;
所以∠ABE=∠EBC,∠D=∠ABE,
又∠ABE=∠ACE,
故∠D=∠ACE.
點(diǎn)評:解決本題第二問的關(guān)鍵是要根據(jù)圖形分析,是哪兩個角是相等的,然后根據(jù)已知條件,分析圖形中角與角之間的關(guān)系,并找出他們與要證明相等的兩個角之間的關(guān)系,然后進(jìn)行轉(zhuǎn)化,得到答案.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點(diǎn)H,HB=2.
(1)求DE的長;
(2)延長ED到P,過P作圓O的切線,切點(diǎn)為C,若PC=2
5
,求PD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過點(diǎn)D引割線交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經(jīng)過圓上O的點(diǎn)C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點(diǎn)D,使得CD=AC,連結(jié)AD交圓O于點(diǎn)E,連結(jié)BE與AC交于點(diǎn)F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習(xí)冊答案