已知數(shù)列滿足,,,是數(shù)列 的前項和.
(1)若數(shù)列為等差數(shù)列.
①求數(shù)列的通項;
②若數(shù)列滿足,數(shù)列滿足,試比較數(shù)列 前項和與前項和的大;
(2)若對任意,恒成立,求實數(shù)的取值范圍.
(1)①
②當(dāng)或時,;當(dāng)或時,;當(dāng)時,
(2)
解析試題分析:(1) 解等差數(shù)列問題,主要從待定系數(shù)對應(yīng)關(guān)系出發(fā).①從與關(guān)系出發(fā),得出,利用解出,從而解出首項與公差,② 實際是一個等比數(shù)列,分別求出數(shù)列 前項和與前項和 ,要使計算簡便,需用 表示 ,比較兩者大小通常用作差法. 作差法的關(guān)鍵是因式分解,將差分解為因子,根據(jù)因子的符號討論差的正負(fù),從而確定大小,(2) 不等式恒成立問題,首先化簡不等式. 需從與關(guān)系出發(fā),得出項的關(guān)系:,這是三項之間的關(guān)系,需繼續(xù)化簡成兩項之間關(guān)系:,這樣原數(shù)列分解為三個等差數(shù)列,則恒成立等價轉(zhuǎn)化為且,代入可解得
試題解析:解:(1)因為,所以,
即,又,所以, 2分
①又因為數(shù)列成等差數(shù)列,所以,即,解得,
所以; 4分
②因為,所以,其前項和,
又因為, 5分
所以其前項和,所以, 7分
當(dāng)或時,;當(dāng)或時,;
當(dāng)時, 9分
(2)由知,
兩式作差,得, 10分
所以,作差得, 11分
所以,當(dāng)時,;
當(dāng)時,;
當(dāng)時,;
當(dāng)時,; 14分
因為對任意,恒成立,所以且,
所以,解得,,故實數(shù)的取值范圍為. 16分
考點:等差數(shù)列通項,等比數(shù)列求和,不等式恒成立
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n項和為Sn.
(1)求數(shù)列{an}的通項公式.
(2)設(shè)數(shù)列{bn}滿足bn=,其前n項和為Tn,求證:Tn<(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知n∈N*,數(shù)列{dn}滿足dn=,數(shù)列{an}滿足an=d1+d2+d3+…+d2n,又知在數(shù)列{bn}中,b1=2,且對任意正整數(shù)m,n,.
(1)求數(shù)列{an}和數(shù)列{bn}的通項公式;
(2)將數(shù)列{bn}中的第a1項,第a2項,第a3項,…,第an項,…刪去后,剩余的項按從小到大的順序排成新數(shù)列{cn},求數(shù)列{cn}的前2 013項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列{an}中,a16+a17+a18=a9=-36,其前n項和為Sn.
(1)求Sn的最小值,并求出Sn取最小值時n的值;
(2)求Tn=|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列是公差不為零的等差數(shù)列,,且是和的等比中項.
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列的前項和為,,試問當(dāng)為何值時,最大?并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前項和為,已知,.
(1)求;
(2)若從中抽取一個公比為的等比數(shù)列,其中,且,.
①當(dāng)取最小值時,求的通項公式;
②若關(guān)于的不等式有解,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為等比數(shù)列,其中a1=1,且a2,a3+a5,a4成等差數(shù)列.
(1)求數(shù)列的通項公式:
(2)設(shè),求數(shù)列{}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),且),且數(shù)列是首項為4,公差為2的等差數(shù)列。
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)若,當(dāng)時,求數(shù)列的前n項和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在等比數(shù)列中,,且是和的等差中項.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列滿足,求的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com