設(shè)等差數(shù)列的前項(xiàng)和為,已知.
(1)求;
(2)若從中抽取一個(gè)公比為的等比數(shù)列,其中,且,.
①當(dāng)取最小值時(shí),求的通項(xiàng)公式;
②若關(guān)于的不等式有解,試求的值.

(1),(2)①,②

解析試題分析:(1)解等差數(shù)列問(wèn)題,主要從待定系數(shù)對(duì)應(yīng)關(guān)系出發(fā).由等差數(shù)列前n項(xiàng)和公式求出公差d即可,(2)①利用等比數(shù)列每一項(xiàng)都為等差數(shù)列中項(xiàng)這一限制條件,對(duì)公比逐步進(jìn)行驗(yàn)證、取舍,直到滿(mǎn)足.因?yàn)檠芯康氖?img src="http://thumb.zyjl.cn/pic5/tikupic/0d/f/eyn1y2.png" style="vertical-align:middle;" />取最小值時(shí)的通項(xiàng)公式,因此可從第二項(xiàng)開(kāi)始進(jìn)行驗(yàn)證,首先滿(mǎn)足的就是所求的公比,②由①易得的函數(shù)關(guān)系,并由為正整數(shù)初步限制取值范圍,當(dāng)時(shí)適合題意,當(dāng)時(shí),不合題意.再由不等式有解,歸納猜想并證明取值范圍為本題難點(diǎn)是如何說(shuō)明當(dāng)時(shí)不等式無(wú)解,可借助研究數(shù)列單調(diào)性的方法進(jìn)行說(shuō)明.
試題解析:(1)設(shè)等差數(shù)列的公差為,則,解得,  2分
所以.              4分
(2)因?yàn)閿?shù)列是正項(xiàng)遞增等差數(shù)列,所以數(shù)列的公比,
,則由,得,此時(shí),由,
解得,所以,同理;          6分
,則由,得,此時(shí),
另一方面,,所以,即,    8分
所以對(duì)任何正整數(shù)是數(shù)列的第項(xiàng).所以最小的公比
所以.                    10分
(3)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ad/a/1pz7y3.png" style="vertical-align:middle;" />,得,而,
所以當(dāng)時(shí),所有的均為正整數(shù),適合題意;
當(dāng)時(shí),不全是正整數(shù),不合題意.
有解,所以有解,經(jīng)檢驗(yàn),當(dāng),,時(shí),都是的解,適合題意;          12分
下證當(dāng)時(shí),無(wú)解, 設(shè),
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/99/5/1pcqr2.png" style="verti

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前n項(xiàng)的和為,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)記,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且對(duì)任意正整數(shù)n,點(diǎn)(an+1Sn)在直線3x+2y-3=0上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,求出λ的值;若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列為等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿(mǎn)足,,是數(shù)列 的前項(xiàng)和.
(1)若數(shù)列為等差數(shù)列.
①求數(shù)列的通項(xiàng)
②若數(shù)列滿(mǎn)足,數(shù)列滿(mǎn)足,試比較數(shù)列 前項(xiàng)和項(xiàng)和的大。
(2)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知首項(xiàng)為的等比數(shù)列{an}是遞減數(shù)列,其前n項(xiàng)和為Sn,且S1+a1,S2+a2,S3+a3成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)已知,求數(shù)列{bn}的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列是公比為正數(shù)的等比數(shù)列,,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)已知函數(shù) ,當(dāng)時(shí)取得最小值-4.
(1)求函數(shù)的解析式;
(2)若等差數(shù)列前n項(xiàng)和為,且,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列滿(mǎn)足:,(其中為非零常數(shù),).
(1)判斷數(shù)列是不是等比數(shù)列?
(2)求;
(3)當(dāng)時(shí),令,為數(shù)列的前項(xiàng)和,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案