【題目】如圖,在直三棱柱中,,,已知G與E分別為和的中點(diǎn),D和F分別為線段AC和AB上的動(dòng)點(diǎn)(不包括端點(diǎn)),若,則線段DF的長度的平方取值范圍為( ).
A.B.C.D.
【答案】D
【解析】
根據(jù)直三棱柱中三條棱兩兩垂直,可建立空間直角坐標(biāo)系,設(shè)出F、D的坐標(biāo),求出向量,利用GD⊥EF求得關(guān)系式,寫出的表達(dá)式,然后利用二次函數(shù)求最值即可.
建立如圖所示的空間直角坐標(biāo)系,則A(0,0,0),E(0,1,),
G( ,0,1),F(x,0,0),D(0,y,0)
∴
∵GD⊥EF,
∴x+2y﹣1=0,
∴x=1﹣2y
DF
∵0<y<1
∴當(dāng)y時(shí),線段DF長度的最小值是
又y=0時(shí),線段DF長度的最大值是1
而不包括端點(diǎn),故y=1不能;
故線段DF的長度的取值范圍是:[,1).
即線段的長度的平方取值范圍為,
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,對任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線上,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)若使得不等式成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐的底面ABCD是直角梯形,AD//BC,,E為CD的中點(diǎn),
(1)證明:平面PBD平面ABCD;
(2)若,PC與平面ABCD所成的角為,試問“在側(cè)面PCD內(nèi)是否存在一點(diǎn)N,使得平面PCD?”若存在,求出點(diǎn)N到平面ABCD的距離;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在直角坐標(biāo)系內(nèi),直線的參數(shù)方程為(為參數(shù),為傾斜角).以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)寫出曲線的直角坐標(biāo)方程及直線經(jīng)過的定點(diǎn)的坐標(biāo);
(Ⅱ)設(shè)直線與曲線相交于兩點(diǎn),求點(diǎn)到兩點(diǎn)的距離之和的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com