【題目】在如圖的表格中,每格填上一個(gè)數(shù)字后,使每一橫行成等差數(shù)列,每一縱列成等比數(shù)列,則a+b+c的值為( )
A. 1 B. 2 C. 3 D. 4
【答案】A
【解析】
從第三列入手,根據(jù)等比中項(xiàng)得2×a=12,可得a=,所以每一列的公比都為,由此計(jì)算出第一列中的第3個(gè)數(shù)為=.接下來(lái)研究第三行對(duì)應(yīng)的等差數(shù)列,可以求出公差為()=,從而用等差數(shù)列的通項(xiàng)公式計(jì)算出第三行的第4、5兩個(gè)數(shù),也即第四列的第3個(gè)數(shù)和第五列的第3個(gè)數(shù).最后研究第四列和第五列的等比數(shù)列,分別可以計(jì)算出b、c的值,最終求出的a+b+c值.
∵每一橫行成等差數(shù)列,每一縱列成等比數(shù)列,
∴根據(jù)第三列,得2×a=12,可得a=,所以公比q=
在第一列中,第三個(gè)數(shù)為=
因此根據(jù)等差中項(xiàng)得:第三行第2個(gè)數(shù)為:=
可得第三行等差數(shù)列的公差為d==
∴在第三行中,第4個(gè)數(shù)為:+3×=,第5個(gè)數(shù)為:+4×=,
即第四列中,第3個(gè)數(shù)為;第五列中,第3個(gè)數(shù)為.
∵在第四列中,第4個(gè)數(shù)b與第3個(gè)數(shù)之比為q=
∴b=
同理,在第五列中,第5個(gè)數(shù)c與第3個(gè)數(shù)之比為q2=
∴c=
綜上所述,得a+b+c==1
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的長(zhǎng)軸與短軸之和為6,橢圓上任一點(diǎn)到兩焦點(diǎn), 的距離之和為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線: 與橢圓交于, 兩點(diǎn), , 在橢圓上,且, 兩點(diǎn)關(guān)于直線對(duì)稱,問(wèn):是否存在實(shí)數(shù),使,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù), =2.71828…).
(1)當(dāng)時(shí),過(guò)點(diǎn)作曲線的切線,求的方程;
(2)當(dāng)時(shí),求證;
(3)求證:對(duì)任意正整數(shù),都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是邊長(zhǎng)為2的等邊三角形,2AE=BD=2.
(Ⅰ)若F是線段CD的中點(diǎn),證明:EF⊥面DBC;
(Ⅱ)求二面角D﹣EC﹣B的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2sin θ,θ∈[0,2π).
(1)求曲線C的直角坐標(biāo)方程;
(2)在曲線C上求一點(diǎn)D,使它到直線l:的距離最短,并求出點(diǎn)D的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f′(x)﹣g(x)(f′(x)為函數(shù)f(x)的導(dǎo)函數(shù))在[a,b]上有且只有兩個(gè)不同的零點(diǎn),則稱f(x)是g(x)在[a,b]上的“關(guān)聯(lián)函數(shù)”.若f(x)= +4x是g(x)=2x+m在[0,3]上的“關(guān)聯(lián)函數(shù)”,則實(shí)數(shù)m的取值范圍是( )
A.
B.[﹣1,0]
C.(﹣∞,﹣2]
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列滿足遞推式
(1)求a1,a2,a3;
(2)若存在一個(gè)實(shí)數(shù),使得為等差數(shù)列,求值;
(3)求數(shù)列{}的前n項(xiàng)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD與BDEF均為菱形,設(shè)AC與BD相交于點(diǎn)O,若∠DAB=∠DBF=60°,且FA=FC.
(1)求證:FC∥平面EAD;
(2)求二面角A-FC-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A. “sinθ=”是“θ=30°”的充分不必要條件
B. 命題“若a=0,則ab=0”的否命題是“若a≠0,則ab≠0”
C. △ABC中,“sin A>sin B”是“A>B”的充要條件
D. 如果命題“綈p”與命題“p∨q”都是真命題,那么命題q一定是真命題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com