已知函數(shù)f(x)=2sinxcosx+cos2x(x∈R).
(1)求f(x)的最小正周期和最大值;
(2)若θ為銳角,且,求tan2θ的值.
【答案】分析:(1)利用二倍角公式、兩角和的正弦函數(shù)化簡函數(shù)為一個角的一個三角函數(shù)的形式,然后求函數(shù)f(x)的最小正周期和最大值;
(2)通過θ為銳角,且,求出cos2θ的值,sin2θ的值,然后求tan2θ的值.
解答:(1)解:f(x)=2sinxcosx+cos2x=sin2x+cos2x(2分)
=(3分)
=.(4分)
∴f(x)的最小正周期為,最大值為.(6分)
(2)解:∵,∴.(7分)
.(8分)
∵θ為銳角,即,∴0<2θ<π.
.(10分)
.(12分)
點評:本小題主要考查三角函數(shù)性質(zhì),同角三角函數(shù)的基本關(guān)系、兩倍角公式等知識,考查化歸與轉(zhuǎn)化的數(shù)學思想方法和運算求解能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2-
1
x
,(x>0),若存在實數(shù)a,b(a<b),使y=f(x)的定義域為(a,b)時,值域為(ma,mb),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2+log0.5x(x>1),則f(x)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2(m-1)x2-4mx+2m-1
(1)m為何值時,函數(shù)的圖象與x軸有兩個不同的交點;
(2)如果函數(shù)的一個零點在原點,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•上海)已知函數(shù)f(x)=2-|x|,無窮數(shù)列{an}滿足an+1=f(an),n∈N*
(1)若a1=0,求a2,a3,a4;
(2)若a1>0,且a1,a2,a3成等比數(shù)列,求a1的值
(3)是否存在a1,使得a1,a2,…,an,…成等差數(shù)列?若存在,求出所有這樣的a1,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選修4-5:不等式選講
已知函數(shù)f(x)=2|x-2|-x+5,若函數(shù)f(x)的最小值為m
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若不等式|x-a|+|x+2|≥m恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案