“a=3或-2”是“直線ax+2y+2a=0和直線3x+(a-1)y-a+4=0平行”的( 。l件.
A、充分而不必要
B、必要而不充分
C、充要
D、既不充分也不必要
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:由直線ax+2y+2a=0和直線3x+(a-1)y-a+4=0平行?
3
a
=
a-1
2
4-a
2a
(a≠0)?a=3.即可判斷出.
解答: 解:直線ax+2y+2a=0和直線3x+(a-1)y-a+4=0平行?
3
a
=
a-1
2
4-a
2a
(a≠0)?a=3.
∴“a=3或-2”是“直線ax+2y+2a=0和直線3x+(a-1)y-a+4=0平行”的必要不充分條件.
故選:B.
點(diǎn)評(píng):本題考查了兩條直線平行的充要條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果兩個(gè)球的半徑之比為2:3,那么兩個(gè)球的表面積之比為( 。
A、8:27B、2:3
C、4:9D、2:9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-x2+2x-1,x∈(0,2]的( 。
A、最大值是0,最小值是-1
B、最小值是0,無(wú)最大值
C、最大值是1,最小值是0
D、最大值是0,無(wú)最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓(x-3)2+y2=1與圓(x-6)2+(y-4)2=36的位置關(guān)系是( 。
A、外離B、外切C、相交D、內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若兩條直線a、b與平面α所成的角相等,則a與b的位置關(guān)系是(  )
A、平行B、相交
C、異面D、以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=
3
cosx+sinx(x∈R)的圖象向左平移
π
6
個(gè)長(zhǎng)度單位后,所得到的圖象關(guān)于( 。⿲(duì)稱.
A、y軸
B、原點(diǎn)(0,0)
C、直線x=
π
3
D、點(diǎn)(
6
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是偶函數(shù),且在[0,+∞)上是減函數(shù),則不等式f(lgx)>f(1)的解集是( 。
A、(
1
10
,1)
B、(
1
10
,10)
C、(0,
1
10
)∪(1,+∞)
D、(0,1)∪(10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中:①兩直線無(wú)公共點(diǎn),則兩直線平行;②兩直線若不是異面直線,則必相交或平行;③過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線,與平面內(nèi)的任一直線均構(gòu)成異面直線;④和兩條異面直線都相交的兩直線必是異面直線.其中正確命題的個(gè)數(shù)為( 。
A、0B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在多面體EFABCD中,底面正方形ABCD的兩條對(duì)角線AC與BD相交于點(diǎn)O,且AF⊥平面ABCD,DE∥AF,AB=DE=2,AF=1.
(1)在平面ADEF內(nèi)是否存在一點(diǎn)M,使OM∥平面CDE?若存在,試確定點(diǎn)M的位置,若不存在,請(qǐng)說(shuō)明理由;
(2)求直線EC與平面BDE所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案