【題目】分別拋擲兩顆骰子各一次,觀察向上的點(diǎn)數(shù),求:

(1)兩數(shù)之和為5的概率;

(2)以第一次向上的點(diǎn)數(shù)為橫坐標(biāo),第二次向上的點(diǎn)數(shù)為縱坐標(biāo)的點(diǎn)在圓內(nèi)部的概率.

【答案】(1) (2)

【解析】試題分析:(1)列舉可得共有36個等可能基本事件,兩數(shù)之和為5”含有4個基本事件,由概率公式可得;
(2)點(diǎn)(x,y)在圓x2+y2=15的內(nèi)部包含8個事件,由概率公式可得.

試題解析:

將一顆骰子先后拋擲2次,此問題中含有36個等可能基本事件.

(1)記“兩數(shù)之和為5“為事件,則事件中含有4個基本事件: , , , ,所以.

∴兩數(shù)之和為5的概率為.

(2)基本事件總數(shù)為36,點(diǎn)在圓的內(nèi)部記為事件,則包含8個事件中所含基本事件: , , , , , , ,所以

∴點(diǎn)在圓內(nèi)部的概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注某部門為了對該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值百分制按照,,,分成5組,制成如圖所示頻率分直方圖.

求圖中x的值;

求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評分值為的人中隨機(jī)抽取2人進(jìn)行座談,求恰有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .若存在實(shí)數(shù)k使得函數(shù)f(x)的值域為[﹣1,1],則實(shí)數(shù)a的取值范圍是(
A.
B.
C.[1,3]
D.[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正項等比數(shù)列{an},若2a1+3a2=1,a32=9a2a6
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3a1+log3a2+log3a3+…log3an , 求數(shù)列{ }的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在2008奧運(yùn)會上兩名射擊運(yùn)動員甲、乙在比賽中打出如下成績:甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;用莖葉圖表示甲,乙兩個成績;并根據(jù)莖葉圖分析甲、乙兩人成績?nèi)鐖D所示,莖表示成績的整數(shù)環(huán)數(shù),葉表示小數(shù)點(diǎn)后的數(shù)字.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若互不相等的實(shí)數(shù)x1 , x2 , x3滿足f(x1)=f(x2)=f(x3),則x1+x2+x3的取值范圍是(
A.( ]
B.(
C.( ]
D.(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=ax﹣ ﹣5lnx,其中a∈R.
(1)若g(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)h(x)=x2﹣mx+4,當(dāng)a=2時,若x1∈(0,1),x2∈[1,2],總有g(shù)(x1)≥h(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓x2+y2﹣12x+32=0的圓心為Q,過點(diǎn)P(0,2)且斜率為k的直線與圓Q相交于不同的兩點(diǎn)A,B.
(1)求k的取值范圍;
(2)是否存在常數(shù)k,使得向量 共線?如果存在,求k值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2015年7月9日21時15分,臺風(fēng)“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,造成165.17萬人受災(zāi),5.6萬人緊急轉(zhuǎn)移安置,288間房屋倒塌,46.5千公頃農(nóng)田受災(zāi),直接經(jīng)濟(jì)損失12.99億元,距離陸豐市222千米的梅州也受到了臺風(fēng)的影響,適逢暑假,小明調(diào)查了梅州某小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五組,并作出如圖頻率分布直方圖:
附:臨界值參考公式: ,n=a+b+c+d.

(1)試根據(jù)頻率分布直方圖估計小區(qū)平均每戶居民的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)小明向班級同學(xué)發(fā)出倡議,為該小區(qū)居民損款,現(xiàn)從損失超過4000元的居民中隨機(jī)抽出2戶進(jìn)行捐款援助,投抽出損失超過8000元的居民為ξ戶,求ξ的分布列和數(shù)學(xué)期望;
(3)臺風(fēng)后區(qū)委會號召該小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如表,在表格空白外填寫正確數(shù)字,并說明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

經(jīng)濟(jì)損失不超過4000元

經(jīng)濟(jì)損失超過4000元

合計

捐款超過500元

30

損款不超過500元

6

合計

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案