【題目】共享單車是指由企業(yè)在校園、公交站點、商業(yè)區(qū)、公共服務(wù)區(qū)等場所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注某部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值百分制按照,,,分成5組,制成如圖所示頻率分直方圖.
求圖中x的值;
求這組數(shù)據(jù)的平均數(shù)和中位數(shù);
已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評分值為的人中隨機抽取2人進行座談,求恰有1名女生的概率.
【答案】(1);(2)平均數(shù)為,中位數(shù)為;(3).
【解析】
利用頻率分布直方圖小長方形面積之和為1求解x的值即可;
由平均數(shù)公式計算平均數(shù)即可,利用左右兩側(cè)面積均為0.5計算中位數(shù)即可.
首先確定男女生的人數(shù),然后利用古典概型計算公式求解滿足 題意的概率值即可.
由,
解得.
這組數(shù)據(jù)的平均數(shù)為.
中位數(shù)設(shè)為,
則,
解得.
滿意度評分值在內(nèi)有人,
其中男生3人,女生2人.記為,
記“滿意度評分值為的人中隨機抽取2人進行座談,恰有1名女生”為事件A
通過列舉知總基本事件個數(shù)為10個,A包含的基本事件個數(shù)為6個,
利用古典概型概率公式可知.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長2的正方形,E,F(xiàn)分別為線段DD1,BD的中點.
(1)求證:EF∥平面ABC1D1;
(2)AA1=2,求異面直線EF與BC所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ae2x+(a﹣2)ex﹣x.(12分)
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列中,在直線.
(1)求數(shù)列{an}的通項公式;
(2)令,數(shù)列的前n項和為.
(ⅰ)求;
(ⅱ)是否存在整數(shù)λ,使得不等式(-1)nλ< (n∈N)恒成立?若存在,求出λ的取值的集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B是橢圓C: + =1長軸的兩個端點,若C上存在點M滿足∠AMB=120°,則m的取值范圍是( 。
A.(0,1]∪[9,+∞)
B.(0, ]∪[9,+∞)
C.(0,1]∪[4,+∞)
D.(0, ]∪[4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B為曲線C:y= 上兩點,A與B的橫坐標(biāo)之和為4.(12分)
(1)求直線AB的斜率;
(2)設(shè)M為曲線C上一點,C在M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線已知的頂點,若其歐拉線的方程為,則頂點的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】海水養(yǎng)殖場進行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對比,收獲時各隨機抽取了100 個網(wǎng)箱,測量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如圖:
(Ⅰ)設(shè)兩種養(yǎng)殖方法的箱產(chǎn)量相互獨立,記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg,新養(yǎng)殖法的箱產(chǎn)量不低于50kg”,估計A的概率;
(Ⅱ)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50kg | 箱產(chǎn)量≥50kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(Ⅲ)根據(jù)箱產(chǎn)量的頻率分布直方圖,求新養(yǎng)殖法箱產(chǎn)量的中位數(shù)的估計值(精確到0.01).
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分別拋擲兩顆骰子各一次,觀察向上的點數(shù),求:
(1)兩數(shù)之和為5的概率;
(2)以第一次向上的點數(shù)為橫坐標(biāo),第二次向上的點數(shù)為縱坐標(biāo)的點在圓內(nèi)部的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com