已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓相交于、兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知,,,分別是橢圓的四個(gè)頂點(diǎn),△是一個(gè)邊長(zhǎng)為2的等邊三角形,其外接圓為圓.
(1)求橢圓及圓的方程;
(2)若點(diǎn)是圓劣弧上一動(dòng)點(diǎn)(點(diǎn)異于端點(diǎn),),直線分別交線段,橢圓于點(diǎn),,直線與交于點(diǎn).
(。┣的最大值;
(ⅱ)試問(wèn):..,兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出該定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓C1:的右焦點(diǎn)為F,P為橢圓上的一個(gè)動(dòng)點(diǎn).
(1)求線段PF的中點(diǎn)M的軌跡C2的方程;
(2)過(guò)點(diǎn)F的直線l與橢圓C1相交于點(diǎn)A、D,與曲線C2順次相交于點(diǎn)B、C,當(dāng)時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)在雙曲線上,且雙曲線的一條漸近線的方程是.
(1)求雙曲線的方程;
(2)若過(guò)點(diǎn)且斜率為的直線與雙曲線有兩個(gè)不同交點(diǎn),求實(shí)數(shù)的取值范圍;
(3)設(shè)(2)中直線與雙曲線交于兩個(gè)不同點(diǎn),若以線段為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知,,是橢圓上不同的三點(diǎn),,,在第三象限,線段的中點(diǎn)在直線上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)C的坐標(biāo);
(3)設(shè)動(dòng)點(diǎn)在橢圓上(異于點(diǎn),,)且直線PB,PC分別交直線OA于,兩點(diǎn),證明為定值并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓E上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且,|BC|=2|AC|.
(1)求橢圓E的方程;
(2)在橢圓E上是否存點(diǎn)Q,使得?若存在,有幾個(gè)(不必求出Q點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說(shuō)明理由.
(3)過(guò)橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作的兩條切線,切點(diǎn)分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓,直線與相交于、兩點(diǎn),與軸、軸分別相交于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若直線的方程為,求外接圓的方程;
(2)判斷是否存在直線,使得、是線段的兩個(gè)三等分點(diǎn),若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
知橢圓的兩焦點(diǎn)、,離心率為,直線:與橢圓交于兩點(diǎn),點(diǎn)在軸上的射影為點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求直線的方程,使的面積最大,并求出這個(gè)最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線C上動(dòng)點(diǎn)P(x,y)到定點(diǎn)F1(,0)與定直線l1∶x=的距離之比為常數(shù).
(1)求曲線C的軌跡方程;
(2)以曲線C的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點(diǎn)M與點(diǎn)N,求·的最小值,并求此時(shí)圓T的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com