【題目】用數學歸納法證明“能被3整除”的第二步中,時,為了使用假設,應將5k+1-2k+1變形為( ).
A. (5k-2k)+4×5k-2k B. 5(5k-2k)+3×2k
C. (5-2)(5k-2k) D. 2(5k-2k)-3×5k
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sinxcos(x+ )+ .
(1)求函數f(x)的單調遞減區(qū)間;
(2)求函數f(x)在區(qū)間[0, ]上的最大值及最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將函數f(x)= sin2x﹣ cos2x+1的圖象向左平移 個單位,再向下平移1個單位,得到函數y=g(x)的圖象,則下列關予函數y=g(x)的說法錯誤的是( )
A.函數y=g(x)的最小正周期為π
B.函數y=g(x)的圖象的一條對稱軸為直線x=
C. g(x)dx=
D.函數y=g(x)在區(qū)間[ , ]上單調遞減
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某闖關游戲規(guī)則是:先后擲兩枚骰子,將此試驗重復n輪,第n輪的點數分別記為xn , yn , 如果點數滿足xn< ,則認為第n輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結束.
(Ⅰ)求第一輪闖關成功的概率;
(Ⅱ)如果第i輪闖關成功所獲的獎金數f(i)=10000× (單位:元),求某人闖關獲得獎金不超過1250元的概率;
(Ⅲ)如果游戲只進行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進行的輪數為隨機變量X,求x的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體中,,分別為 棱,上的點. 已知下列判斷:
①平面;②在側面上 的正投影是面積為定值的三角形;③在平面內總存在與平面平行的直線;④平 面與平面所成的二面角(銳角)的大小與點的位置有關,與點的位置無關.
其中正確判斷的個數有
(A)1個 (B)2個 (C)3個 (D)4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com