【題目】用數(shù)學歸納法證明“能被3整除”的第二步中,時,為了使用假設,應將5k+1-2k+1變形為( ).

A. (5k-2k)+4×5k-2k B. 5(5k-2k)+3×2k

C. (5-2)(5k-2k) D. 2(5k-2k)-3×5k

【答案】B

【解析】

本題考查的數(shù)學歸納法的步驟,在使用數(shù)學歸納法證明“5n﹣2n能被3整除”的過程中,由n=k時成立,即“5k﹣2k能被3整除”時,為了使用已知結(jié)論對5k+1﹣2k+1進行論證,在分解的過程中一定要分析出含5k﹣2k的情況.

假設n=k時命題成立,即:5k﹣2k被3整除.

當n=k+1時,

5k+1﹣2k+1=5×5k﹣2×2k

=5(5k﹣2k)+5×2k﹣2×2k

=5(5k﹣2k)+3×2k

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxcos(x+ )+
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)= sin2x﹣ cos2x+1的圖象向左平移 個單位,再向下平移1個單位,得到函數(shù)y=g(x)的圖象,則下列關予函數(shù)y=g(x)的說法錯誤的是(
A.函數(shù)y=g(x)的最小正周期為π
B.函數(shù)y=g(x)的圖象的一條對稱軸為直線x=
C. g(x)dx=
D.函數(shù)y=g(x)在區(qū)間[ , ]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別是abc,已知

(1)求的值;

(2)若,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在同一坐標系中,函數(shù)y=ax+ay=ax的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某闖關游戲規(guī)則是:先后擲兩枚骰子,將此試驗重復n輪,第n輪的點數(shù)分別記為xn , yn , 如果點數(shù)滿足xn ,則認為第n輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結(jié)束.
(Ⅰ)求第一輪闖關成功的概率;
(Ⅱ)如果第i輪闖關成功所獲的獎金數(shù)f(i)=10000× (單位:元),求某人闖關獲得獎金不超過1250元的概率;
(Ⅲ)如果游戲只進行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進行的輪數(shù)為隨機變量X,求x的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體中,,分別為 棱,上的點. 已知下列判斷:

平面在側(cè)面上 的正投影是面積為定值的三角形;在平面內(nèi)總存在與平面平行的直線;平 面與平面所成的二面角(銳角)的大小與點的位置有關,與點的位置無關.

其中正確判斷的個數(shù)有

(A)1個 (B)2個 (C)3個 (D)4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,正確的是 ( )
A.當x>0且x≠1時,
B.當x>0時,
C.當x≥2時,的最小值為2
D.當0<x≤2時,無最大值

查看答案和解析>>

同步練習冊答案