【題目】某闖關(guān)游戲規(guī)則是:先后擲兩枚骰子,將此試驗(yàn)重復(fù)n輪,第n輪的點(diǎn)數(shù)分別記為xn , yn , 如果點(diǎn)數(shù)滿足xn ,則認(rèn)為第n輪闖關(guān)成功,否則進(jìn)行下一輪投擲,直到闖關(guān)成功,游戲結(jié)束.
(Ⅰ)求第一輪闖關(guān)成功的概率;
(Ⅱ)如果第i輪闖關(guān)成功所獲的獎(jiǎng)金數(shù)f(i)=10000× (單位:元),求某人闖關(guān)獲得獎(jiǎng)金不超過1250元的概率;
(Ⅲ)如果游戲只進(jìn)行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進(jìn)行的輪數(shù)為隨機(jī)變量X,求x的分布列和數(shù)學(xué)期望.

【答案】解:(Ⅰ),當(dāng)y1=6時(shí),y1 ,因此x1=1,2; 當(dāng)y1=5時(shí),y1 ,因此x1=1,2;
當(dāng)y1=4時(shí),y1 ,因此x1=1,2;
當(dāng)y1=3時(shí),y1 ,因此x1=1;
當(dāng)y1=2時(shí),y1 因此x1=1;
當(dāng)y1=1時(shí),y1 ,因此x1無值;
∴第一輪闖關(guān)成功的概率P(A)=
(Ⅱ)令金數(shù)f(i)=10000× ≤1250,則i≥3,
由(Ⅰ)每輪過關(guān)的概率為
某人闖關(guān)獲得獎(jiǎng)金不超過1250元的概率
:P(i≥3)=1﹣P(i=1)﹣P(i=2)=1﹣ ﹣(1﹣ )× =
(Ⅲ)依題意X的可能取值為1,2,3,4
設(shè)游戲第k輪后終止的概率為pk(k=1,2,3,4)
p1= .p2=(1﹣ )× = ,p3=(1﹣ 2× = ,p4=1﹣p2﹣p3= ;
故X的分布列為

X

1

2

3

4

P

因此EX=1× +2× +3× +4× =
【解析】(Ⅰ)枚舉法列出所有滿足條件的數(shù)對(duì)(x1 , y1)即可,(Ⅱ)由10000× ≤1250,得i≥3,由(Ⅰ)每輪過關(guān)的概率為 .某人闖關(guān)獲得獎(jiǎng)金不超過1250元的概率:P(i≥3)=1﹣P(i=1)﹣P(i=2)(Ⅲ)設(shè)游戲第k輪后終止的概率為pk(k=1,2,3,4),分別求出相應(yīng)的概率,由能求出X的分布列和數(shù)學(xué)期望.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為

判斷直線l與圓C的交點(diǎn)個(gè)數(shù);

若圓C與直線l交于A,B兩點(diǎn),求線段AB的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖甲所示,放在水平地面上的物體,受到方向不變的水平推力F的作用,F的大小與時(shí)間t的關(guān)系和物體運(yùn)動(dòng)速度v與時(shí)間t的關(guān)系如圖乙所示.下列判斷正確的是:

A.t3s時(shí),物體受到力的合力為零

B.t6s時(shí),將F撤掉,物體立刻靜止

C.2s4s內(nèi)物體所受摩擦力逐漸增大

D.t1s時(shí),物體所受摩擦力是1N

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用數(shù)學(xué)歸納法證明“能被3整除”的第二步中,時(shí),為了使用假設(shè),應(yīng)將5k+1-2k+1變形為( ).

A. (5k-2k)+4×5k-2k B. 5(5k-2k)+3×2k

C. (5-2)(5k-2k) D. 2(5k-2k)-3×5k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山,為了保護(hù)環(huán)境,減少空氣污染,某空氣凈化器制造廠,決定投入生產(chǎn)某種惠民型的空氣凈化器.根據(jù)以往的生產(chǎn)銷售經(jīng)驗(yàn)得到年生產(chǎn)銷售的統(tǒng)計(jì)規(guī)律如下:①年固定生產(chǎn)成本為2萬元;②每生產(chǎn)該型號(hào)空氣凈化器1百臺(tái),成本增加1萬元;③年生產(chǎn)x百臺(tái)的銷售收入(萬元).假定生產(chǎn)的該型號(hào)空氣凈化器都能賣出(利潤(rùn)=銷售收入﹣生產(chǎn)成本).

1)為使該產(chǎn)品的生產(chǎn)不虧本,年產(chǎn)量x應(yīng)控制在什么范圍內(nèi)?

2)該產(chǎn)品生產(chǎn)多少臺(tái)時(shí),可使年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(2)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求x+2y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品在天內(nèi)每件的銷售價(jià)格(元)與時(shí)間)(天)的函數(shù)關(guān)系滿足函數(shù),該商品在天內(nèi)日銷售量(件)與時(shí)間)(天)之間滿足一次函數(shù)關(guān)系如下表:

(1)根據(jù)表中提供的數(shù)據(jù),確定日銷售量與時(shí)間的一次函數(shù)關(guān)系式;

(2)求該商品的日銷售金額的最大值并指出日銷售金額最大的一天是天中的第幾天,(日銷售金額每件的銷售價(jià)格日銷售量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算機(jī)在數(shù)據(jù)處理時(shí)使用的是二進(jìn)制,例如十進(jìn)制的1、2、3、4在二進(jìn)制分別表示為1、10、11、100.下面是某同學(xué)設(shè)計(jì)的將二進(jìn)制數(shù)11111化為十進(jìn)制數(shù)的一個(gè)流程圖,則判斷框內(nèi)應(yīng)填入的條件是(
A.i>4
B.i≤4
C.i>5
D.i≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an},等比數(shù)列{bn}滿足:a1b1=1,a2b2,2a3b3=1.

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)cnanbn,求數(shù)列{cn}的前n項(xiàng)和Sn.

查看答案和解析>>

同步練習(xí)冊(cè)答案