雙曲線的左焦點(diǎn)為F1,頂點(diǎn)為A1、A2,P是雙曲線上任意一點(diǎn),則分別以線段PF1、A1A2為直徑的兩圓的位置關(guān)系為( 。
分析:畫出圖象,考查兩圓的位置關(guān)系,就是看圓心距與半徑和或與半徑差的關(guān)系,分情況P在左支、右支,推導(dǎo)結(jié)論.
解答:解:設(shè)以線段PF1、A1A2為直徑的兩圓的半徑
分別為r1、r2,
若P在雙曲線坐支,如圖所示,
則|O1O2|=
1
2
|PF2|=
1
2
(|PF1|+2a)
=
1
2
|PF1|+a=r1+r2,
即圓心距為半徑之和,兩圓外切.
若P在雙曲線右支,同理求得|O1O2|=r1-r2,
故此時(shí),兩圓相內(nèi)切.
綜上,兩圓相切,
故選B.
點(diǎn)評(píng):本題考查圓與圓的位置關(guān)系及其判定,雙曲線的定義和簡(jiǎn)單性質(zhì)的應(yīng)用,考查數(shù)形結(jié)合思想方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率為e,右頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,點(diǎn)E為右準(zhǔn)線上的動(dòng)點(diǎn),∠AEF2的最大值為θ.
(1)若雙曲線的左焦點(diǎn)為F1(-4,0),一條漸近線的方程為3x-2y=0,求雙曲線的方程;
(2)求sinθ(用e表示);
(3)如圖,如果直線l與雙曲線的交點(diǎn)為P、Q,與兩條漸近線的交點(diǎn)為P'、Q',O為坐標(biāo)原點(diǎn),求證:
OP
+
OQ
=
OP′
+
OQ′

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的左焦點(diǎn)為F1,左、右頂點(diǎn)為A1A2,P為雙曲線上任意一點(diǎn),則分別以線段PF1、A1A2為直徑的兩個(gè)圓的位置關(guān)系為(  )

A.相交                  B.相切                  C.相離                         D.以上情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,雙曲線的左焦點(diǎn)為F1,與x軸的交點(diǎn)為A1A2,P是雙曲線上任意一點(diǎn),則分別以線段PF1、A1A2為直徑的兩圓的位置關(guān)系為(  )

A.相交                                              B.相切

C.相離                                              D.以上情況都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西贛州四所重點(diǎn)中學(xué)高三上學(xué)期期末聯(lián)考理數(shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線的左焦點(diǎn)為F1,左、右頂點(diǎn)分別為A1、A2,P為雙曲線上任意一點(diǎn),則分別以線段PF1,A1A2為直徑的兩個(gè)圓的位置關(guān)系為(    )

A.相交        B.相切        C.相離      D.以上情況都有可能

 

查看答案和解析>>

同步練習(xí)冊(cè)答案