若點(diǎn)A(3,1),F(xiàn)為拋物線y2=2x的焦點(diǎn),點(diǎn)M在拋物線上移動(dòng),則使|MA|+|MF|取最小值時(shí),點(diǎn)M的坐標(biāo)是______.
如圖所示:
設(shè)點(diǎn)M到準(zhǔn)線x=-
1
2
的距離為d=|MN|,
由拋物線定義知,d=|MN|+|MF|,則|MA|+|MF|=|MA|+|MN|,
由圖可知,當(dāng)點(diǎn)N、M、A三點(diǎn)共線時(shí)|MA|+|MF|取最小值,
此時(shí),點(diǎn)M的坐標(biāo)為(
1
2
,1),
故答案為:(
1
2
,1).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線的頂點(diǎn)在原點(diǎn),以x軸為對(duì)稱(chēng)軸,經(jīng)過(guò)焦點(diǎn)且傾斜角為135°的直線被拋物線所截得的弦長(zhǎng)為8,試求拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線C:y2=-2px(p>0)上橫坐標(biāo)為-3的一點(diǎn)到準(zhǔn)線的距離為4.
(1)求p的值;
(2)設(shè)動(dòng)直線y=x+b與拋物線C相交于A、B兩點(diǎn),問(wèn)在直線l:y=2上是否存在與b的取值無(wú)關(guān)的定點(diǎn)M,使得∠AMB被直線l平分?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

M是拋物線y2=4x上的一點(diǎn),F(xiàn)是拋物線的焦點(diǎn),以Fx為始邊,F(xiàn)M為終邊的∠x(chóng)FM=60°,則|FM|=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P是拋物線y2=16x上的一點(diǎn),它到對(duì)稱(chēng)軸的距離為12,F(xiàn)是拋物線的焦點(diǎn),則|PF|=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)點(diǎn)(-1,1)作直線,若它與拋物線y2=4x有且只有一個(gè)公共點(diǎn),這樣的直線共有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線l1:4x-3y+8=0和直線l2:x=-1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是(  )
A.
12
5
B.3C.2D.
37
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線y2=2px(p>0)的焦點(diǎn)為F,已知點(diǎn)A,B為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足∠AFB=120°.過(guò)弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則
|MN|
|AB|
的最大值為( 。
A.
3
3
B.1C.
2
3
3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)P(0,2),拋物線C:y2=2px(p>0)的焦點(diǎn)為F,線段PF與拋物線C的交點(diǎn)為M,過(guò)M作拋物線準(zhǔn)線的垂線,垂足為Q.若∠PQF=90°,則p=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案