當(dāng)a>0,a≠1時,函數(shù)f(x)=loga(x-1)+1的圖象恒過定點A,若點A在直線mx-y+n=0上,則4m+2n的最小值是______.
整理函數(shù)解析式得f(x)-1=loga(x-1),故可知函數(shù)f(x)的圖象恒過(2,1)即A(2,1),
故2m+n=1.
∴4m+2n≥2
4m2n
=2
22m+n
=2
2

當(dāng)且僅當(dāng)4m=2n,即2m=n,
即n=
1
2
,m=
1
4
時取等號.
∴4m+2n的最小值為2
2

故答案為:2
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a>0,a≠1時,函數(shù)f(x)=loga(x-1)+1的圖象恒過定點A,若點A在直線mx-y+n=0上,則4m+2n的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2、當(dāng)a>0且a≠1時,函數(shù)y=ax-1的圖象一定經(jīng)過
(1,1)
點,函數(shù)y=loga(x+1)的圖象一定經(jīng)過
(0,0)
點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①y=2x與y=log2x互為反函數(shù),其圖象關(guān)于直線y=x對稱;
②已知函數(shù)f(x-1)=x2-2x+1.,則f(5)=26;
③當(dāng)a>0且a≠1時,函數(shù)f(x)=ax-2-3必過定點(2,-2);
④函數(shù)y=(
12
)|x|
的值域是(0,+∞);
上述命題中的所有正確命題的序號是
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a>0,a≠1時,函數(shù)f(x)=ax-1+1的圖象經(jīng)過的定點的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004年高考教材全程總復(fù)習(xí)試卷·數(shù)學(xué) 題型:013

設(shè)1<x<2,則下列各式正確的是

[  ]

A.當(dāng)a>0且a≠1時,

B.當(dāng)a>0且a≠1時,

C.當(dāng)0<a<1時,

D.當(dāng)a>1時,

查看答案和解析>>

同步練習(xí)冊答案