【題目】旅游業(yè)作為一個第三產業(yè),時間性和季節(jié)性非常強,每年11月份來臨,全國各地就相繼進入旅游淡季,很多旅游景區(qū)就變得門庭冷落.為改變這種局面,某旅游公司借助一自媒體平臺做宣傳推廣,銷售特惠旅游產品.該公司統(tǒng)計了活動剛推出一周內產品的銷售數(shù)量,用表示活動推出的天數(shù),用表示產品的銷售數(shù)量(單位:百件),統(tǒng)計數(shù)據(jù)如下表所示.
根據(jù)以上數(shù)據(jù),繪制了如圖所示的散點圖,根據(jù)已有的函數(shù)知識,發(fā)現(xiàn)樣本點分布在某一條指數(shù)型函數(shù)的周圍.為求出該回歸方程,相關人員確定的研究方案是:先用其中5個數(shù)據(jù)建立關于的回歸方程,再用剩下的2組數(shù)據(jù)進行檢驗.試回答下列問題:
(1)現(xiàn)令,若選取的是這5組數(shù)據(jù),已知,,請求出關于的線性回歸方程(結果保留一位有效數(shù)字);
(2)若由回歸方程得到的估計數(shù)據(jù)與選出的檢驗數(shù)據(jù)的誤差均不超過,則認為得到的回歸方程是可靠的,試問(1)中所得的回歸方程是否可靠?
參考公式及數(shù)據(jù):對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為, ;;.
科目:高中數(shù)學 來源: 題型:
【題目】已知,,,,,,記動點的軌跡為.
(1)求曲線的軌跡方程.
(2)若斜率為的直線與曲線交于不同的兩點、,與軸相交于點,則是否為定值?若為定值,則求出該定值;若不為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小區(qū)停車場的收費標準為:每車每次停車時間不超過2小時免費,超過2小時的部分每小時收費1元(不足1小時的部分按1小時計算).現(xiàn)有甲乙兩人相互獨立到停車場停車(各停車一次),且兩人停車的時間均不超過5小時,設甲、乙兩人停車時間(小時)與取車概率如下表所示:
(1)求甲、乙兩人所付車費相同的概率;
(2)設甲、乙兩人所付停車費之和為隨機變量,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了解學生一次考試后數(shù)學、物理兩個科目的成績情況,從中隨機抽取了25位考生的成績進行統(tǒng)計分析.25位考生的數(shù)學成績已經統(tǒng)計在莖葉圖中,物理成績如下:
(Ⅰ)請根據(jù)數(shù)據(jù)在答題卡的莖葉圖中完成物理成績統(tǒng)計;
(Ⅱ)請根據(jù)數(shù)據(jù)在答題卡上完成數(shù)學成績的頻數(shù)分布表及數(shù)學成績的頻率分布直方圖;
數(shù)學成績分組 | [50,60﹚ | [60,70﹚ | [70,80﹚ | [80,90﹚ | [90,100﹚ | [100,110﹚ | [110,120] |
頻數(shù) |
(Ⅲ)設上述樣本中第i位考生的數(shù)學、物理成績分別為xi,yi(i=1,2,3,…,25).通過對樣本數(shù)據(jù)進行初步處理發(fā)現(xiàn):數(shù)學、物理成績具有線性相關關系,得到:=86,=64,(xi-)(yi-)=4698,(xi-)2=5524,≈0.85.求y關于x的線性回歸方程,并據(jù)此預測當某考生的數(shù)學成績?yōu)?/span>100分時,該考生的物理成績(精確到1分).
附:回歸直線方程的斜率和截距的最小二乘估計公式分別為:=,=-.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某醬油廠對新品種醬油進行了定價,在各超市得到售價與銷售量的數(shù)據(jù)如下表:
單價(元) | 5 | 5.2 | 5.4 | 5.6 | 5.8 | 6 |
銷量(瓶) | 9.0 | 8.4 | 8.3 | 8.0 | 7.5 | 6.8 |
(1)求售價與銷售量的回歸直線方程;( ,)
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是4元/瓶,為使工廠獲得最大利潤(利潤=銷售收入成本),該產品的單價應定為多少元?
相關公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的首項為1.記.
(1)若為常數(shù)列,求的值:
(2)若為公比為2的等比數(shù)列,求的解析式:
(3)是否存在等差數(shù)列,使得對一切都成立?若存在,求出數(shù)列的通項公式:若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com