(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點A,B;O為坐標(biāo)原點。
(1)若,試探究在曲線C上僅存在幾個點到直線L的距離恰為?并說明理由;
(2)若,且a>b,,試求曲線C的離心率e的取值范圍。
(1)在曲線C上存在3個點到直線L的距離恰為(2)

試題分析:(1)在曲線C上存在3個點到直線L的距離恰為
設(shè),由
                                           2分
又點A,B在直線L上,得,,代入上式化簡得
                                          4分

               6分
所以,于是,這時曲線C表示圓
,O到直線L的距離d=,即有3個點         8分
(2)因為a>b,所以曲線C為焦點在x軸上的橢圓
,所以,
,,              9分
由(1)得,,代入上式整理得

      可得     
 
       12分
點評:第一問由直線與圓錐曲線相交首先利用韋達定理確定了曲線的特點(為圓)進而轉(zhuǎn)化為求圓上的點到直線的距離,第二問求離心率范圍,將離心率求解函數(shù)式用已知中的變量a表示,轉(zhuǎn)換為求函數(shù)值域
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)已知中心在坐標(biāo)原點O,焦點在軸上,長軸長是短軸長的2倍的橢圓經(jīng)過點M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于,且與橢圓交于A、B兩個不同點.
(。┤為鈍角,求直線軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MBx軸圍成的三角形總是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)如圖,已知拋物線C1: y=x2, 與圓C2: x2+(y+1)2="1," 過y軸上一點A(0, a)(a>0)作圓C2的切線AD,切點為D(x0, y0).

(1)證明:(a+1)(y0+1)=1
(2)若切線AD交拋物線C1于E,且E為AD的中點,求點A縱坐標(biāo)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的右準(zhǔn)線為,右焦點,離心率,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
已知一條曲線上的點到定點的距離是到定點距離的二倍,求這條曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知焦點在軸上的橢圓過點,且離心率為,為橢圓的左頂點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知過點的直線與橢圓交于,兩點.
① 若直線垂直于軸,求的大小;
② 若直線軸不垂直,是否存在直線使得為等腰三角形?如果存在,求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓方程為,左、右焦點分別是,若橢圓上的點的距離和等于
(Ⅰ)寫出橢圓的方程和焦點坐標(biāo);
(Ⅱ)設(shè)點是橢圓的動點,求線段中點的軌跡方程;
(Ⅲ)直線過定點,且與橢圓交于不同的兩點,若為銳角(為坐標(biāo)原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)點是以為左、右焦點的雙曲線左支上一點,且滿足,則此雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的左、右焦點分別為,離心率, .
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過點的直線與該橢圓交于兩點,且,求直線的方程.

查看答案和解析>>

同步練習(xí)冊答案