已知雙曲線
x2m
-y2=1
的離心率是2,則m的值是
 
分析:根據(jù)題意算出a=
m
、c=
m+1
,利用離心率的公式建立關(guān)于m的等式,解之即可得出實(shí)數(shù)m的值.
解答:解:∵雙曲線
x2
m
-y2=1
中,a2=m且b2=1,
∴a=
m
,c=
a2+b2
=
m+1
,
又∵雙曲線的離心率是2,
e=
c
a
=
m+1
m
=2
,解得m=
1
3

故答案為:
1
3
點(diǎn)評(píng):本題給出含有參數(shù)m的雙曲線方程,在已知離心率的情況下求m的值.著重考查了雙曲線的標(biāo)準(zhǔn)方程與簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
m
-
y2
4
=1
的一條漸近線方程為y=x,則實(shí)數(shù)m等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
m
-
y2
4
=1
的一條漸近線的方程為y=x,則此雙曲線兩條準(zhǔn)線間距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
m
-
y2
n
=1
(mn≠0)的離心率為2,有一個(gè)焦點(diǎn)恰好是拋物線y2=4x的焦點(diǎn),則此雙曲線的漸近線方程是( 。
A、
3
x±y=0
B、
3
y=0
C、3x±y=0
D、x±3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇二模)已知雙曲線
x2
m
-
y2
3
=1(m>0)
的一條漸近線方程為y=
3
2
x
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•崇明縣二模)已知雙曲線
x2
m
-
y2
m+18
=1
(m>0)的一條漸近線方程為y=
3
x,它的一個(gè)焦點(diǎn)恰好在拋物線y2=ax的準(zhǔn)線上,則 a=
±24
±24

查看答案和解析>>

同步練習(xí)冊(cè)答案