(2011•崇明縣二模)已知雙曲線
x2
m
-
y2
m+18
=1
(m>0)的一條漸近線方程為y=
3
x,它的一個(gè)焦點(diǎn)恰好在拋物線y2=ax的準(zhǔn)線上,則 a=
±24
±24
分析:先利用漸近線方程求雙曲線的標(biāo)準(zhǔn)方程,再利用一個(gè)焦點(diǎn)恰好在拋物線y2=ax的準(zhǔn)線上,可求解.
解答:解:由題意,
m+18
m
=3
,∴m=9
∴雙曲線的焦點(diǎn)坐標(biāo)為(±6,0)
a
4
=±6
,∴a=±24
故答案為±24.
點(diǎn)評(píng):本題的考點(diǎn)是圓錐曲線的綜合,主要考查雙曲線的漸近線,考查拋物線的準(zhǔn)線,關(guān)鍵是利用漸近線方程求雙曲線的標(biāo)準(zhǔn)方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)若一個(gè)無(wú)窮等比數(shù)列{an}的前n項(xiàng)和為Sn,且
lim
n→∞
Sn=
1
2
,則首項(xiàng)a1取值范圍是
(0,
1
2
)∪(
1
2
,1)
(0,
1
2
)∪(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)設(shè)函數(shù)f(x)=x2+1,若關(guān)于x的不等式f(
x
m
)+4f(m)≤4m2f(x)+f(x-1)對(duì)任意x∈[
3
2
,+∞)恒成立,則實(shí)數(shù)m的取值范圍是
(-∞,-
3
2
]∪[
3
2
,+∞)
(-∞,-
3
2
]∪[
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)方程log2(3x-4)=1的解x=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)函數(shù)y=cos4πx-sin4πx的最小正周期T=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•崇明縣二模)已知z是方程z-2=i(z+1)的復(fù)數(shù)解,則|z|=
10
2
10
2

查看答案和解析>>

同步練習(xí)冊(cè)答案