【題目】下表為年至年某百貨零售企業(yè)的線下銷售額(單位:萬元),其中年份代碼年份.
年份代碼 | ||||
線下銷售額 |
(1)已知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測年該百貨零售企業(yè)的線下銷售額;
(2)隨著網(wǎng)絡(luò)購物的飛速發(fā)展,有不少顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調(diào)查平臺(tái)為了解顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機(jī)調(diào)查了位男顧客、位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)?
參考公式及數(shù)據(jù):.
【答案】(1),萬元;(2)能.
【解析】
(1)先求出,,利用給出的公式求出,可得線性回歸方程.代入可得年該百貨零售企業(yè)的線下銷售額.
(2)先根據(jù)題設(shè)中的數(shù)據(jù)得到列聯(lián)表,再根據(jù)公式算出的值,最后根據(jù)表中數(shù)據(jù)可得在犯錯(cuò)誤的概率不超過的前提下認(rèn)為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān).
(1)由題易得,,,,
所以,
所以,
所以y關(guān)于x的線性回歸方程為.
由于,所以當(dāng)時(shí),,
所以預(yù)測年該百貨零售企業(yè)的線下銷售額為萬元.
(2)由題可得列聯(lián)表如下:
持樂觀態(tài)度 | 持不樂觀態(tài)度 | 總計(jì) | ||
男顧客 | ||||
女顧客 | ||||
總計(jì) |
故的觀測值,
由于,所以可以在犯錯(cuò)誤的概率不超過的前提下認(rèn)為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
(1)求的單調(diào)區(qū)間;
(2)設(shè),為函數(shù)的兩個(gè)零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,值域是.
(Ⅰ)求證: ;
(Ⅱ)求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近個(gè)月廣告投入量(單位:萬元)和收益(單位:萬元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說明理由;
(Ⅱ)殘差絕對值大于的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:
(。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時(shí),該模型收益的預(yù)報(bào)值是多少?
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;
(2)若函數(shù)在處取得極小值,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解本屆高二學(xué)生對文理科的選擇與性別是否有關(guān),現(xiàn)隨機(jī)從高二的全體學(xué)生中抽取了若干名學(xué)生,據(jù)統(tǒng)計(jì),男生35人,理科生40人,理科男生30人,文科女生15人。
(1)完成如下2×2列聯(lián)表,判斷是否有99.9%的把握認(rèn)為本屆高二學(xué)生“對文理科的選擇與性別有關(guān)”?
男生 | 女生 | 合計(jì) | |
文科 | |||
理科 | |||
合計(jì) |
(2)已采用分層抽樣的方式從樣本的所有女生中抽取了5人,現(xiàn)從這5人中隨機(jī)抽取2人參加座談會(huì),求抽到的2人恰好一文一理的概率。
0.15 | 0.10 | 0.05 | 0.01 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式,其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
Ⅰ當(dāng)時(shí),恒成立,求a的取值范圍;
Ⅱ設(shè)是定義在上的函數(shù),在內(nèi)任取個(gè)數(shù),,,,,設(shè),令,,如果存在一個(gè)常數(shù),使得恒成立,則稱函數(shù)在區(qū)間上的具有性質(zhì)P.試判斷函數(shù)在區(qū)間上是否具有性質(zhì)P?若具有性質(zhì)P,請求出M的最小值;若不具有性質(zhì)P,請說明理由.注:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商品銷售價(jià)格和銷售量與銷售天數(shù)有關(guān),第x天的銷售價(jià)格(元/百斤),第x天的銷售量(百斤)(a為常數(shù)),且第7天銷售該商品的銷售收入為2009元.
(1)求第10天銷售該商品的銷售收入是多少?
(2)這20天中,哪一天的銷售收入最大?為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過點(diǎn)P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線l的方程是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com