【題目】下表為年至年某百貨零售企業(yè)的線下銷(xiāo)售額(單位:萬(wàn)元),其中年份代碼年份

年份代碼

線下銷(xiāo)售額

(1)已知具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測(cè)年該百貨零售企業(yè)的線下銷(xiāo)售額;

(2)隨著網(wǎng)絡(luò)購(gòu)物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)的看法,隨機(jī)調(diào)查了位男顧客、位女顧客(每位顧客從“持樂(lè)觀態(tài)度”和“持不樂(lè)觀態(tài)度”中任選一種),其中對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)持樂(lè)觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)所持的態(tài)度與性別有關(guān)?

參考公式及數(shù)據(jù):

【答案】(1),萬(wàn)元;(2)能.

【解析】

(1)先求出,,利用給出的公式求出,可得線性回歸方程.代入可得年該百貨零售企業(yè)的線下銷(xiāo)售額.

(2)先根據(jù)題設(shè)中的數(shù)據(jù)得到列聯(lián)表,再根據(jù)公式算出的值,最后根據(jù)表中數(shù)據(jù)可得在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)所持的態(tài)度與性別有關(guān).

(1)由題易得,,,

所以,

所以,

所以y關(guān)于x的線性回歸方程為

由于,所以當(dāng)時(shí),,

所以預(yù)測(cè)年該百貨零售企業(yè)的線下銷(xiāo)售額為萬(wàn)元.

(2)由題可得列聯(lián)表如下:

持樂(lè)觀態(tài)度

持不樂(lè)觀態(tài)度

總計(jì)

男顧客

女顧客

總計(jì)

的觀測(cè)值

由于,所以可以在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷(xiāo)售額持續(xù)增長(zhǎng)所持的態(tài)度與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知

(1)求的單調(diào)區(qū)間;

(2)設(shè),為函數(shù)的兩個(gè)零點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,值域是.

(Ⅰ)求證:

(Ⅱ)求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近個(gè)月廣告投入量單位:萬(wàn)元)和收益單位:萬(wàn)元)的數(shù)據(jù)如下表

月份

廣告投入量

收益

他們分別用兩種模型①分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值

Ⅰ)根據(jù)殘差圖,比較模型①②的擬合效果,應(yīng)選擇哪個(gè)模型?并說(shuō)明理由;

Ⅱ)殘差絕對(duì)值大于的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除

。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程

ⅱ)若廣告投入量時(shí),該模型收益的預(yù)報(bào)值是多少?

附:對(duì)于一組數(shù)據(jù),……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;

2)若函數(shù)處取得極小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解本屆高二學(xué)生對(duì)文理科的選擇與性別是否有關(guān),現(xiàn)隨機(jī)從高二的全體學(xué)生中抽取了若干名學(xué)生,據(jù)統(tǒng)計(jì),男生35人,理科生40人,理科男生30人,文科女生15人。

(1)完成如下2×2列聯(lián)表,判斷是否有99.9%的把握認(rèn)為本屆高二學(xué)生“對(duì)文理科的選擇與性別有關(guān)”?

男生

女生

合計(jì)

文科

理科

合計(jì)

(2)已采用分層抽樣的方式從樣本的所有女生中抽取了5人,現(xiàn)從這5人中隨機(jī)抽取2人參加座談會(huì),求抽到的2人恰好一文一理的概率。

0.15

0.10

0.05

0.01

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

(參考公式,其中為樣本容量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

當(dāng)時(shí),恒成立,求a的取值范圍;

設(shè)是定義在上的函數(shù),在內(nèi)任取個(gè)數(shù),,,設(shè),令,如果存在一個(gè)常數(shù),使得恒成立,則稱(chēng)函數(shù)在區(qū)間上的具有性質(zhì)P.試判斷函數(shù)在區(qū)間上是否具有性質(zhì)P?若具有性質(zhì)P,請(qǐng)求出M的最小值;若不具有性質(zhì)P,請(qǐng)說(shuō)明理由.注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品銷(xiāo)售價(jià)格和銷(xiāo)售量與銷(xiāo)售天數(shù)有關(guān),第x的銷(xiāo)售價(jià)格(元/百斤),第x的銷(xiāo)售量(百斤)(a為常數(shù)),且第7天銷(xiāo)售該商品的銷(xiāo)售收入為2009元.

1)求第10天銷(xiāo)售該商品的銷(xiāo)售收入是多少?

2)這20天中,哪一天的銷(xiāo)售收入最大?為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過(guò)點(diǎn)P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長(zhǎng)為8,則直線l的方程是________

查看答案和解析>>

同步練習(xí)冊(cè)答案