是橢圓上的一個點,是橢圓的焦點,如果點到點的距離是,那么點到點的距離是            。
由橢圓的定義可知:,又∵,∴。。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題




求證:到焦點F2的距離也成等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果橢圓的兩條準線之間的距離是這個橢圓焦距的兩倍,那么這個橢圓的離心率為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點與橢圓的左焦點和右焦點的距離之比為,求點的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

給定四條曲線:①;②;③;④。其中與直線僅有一個交點的直線是(     )
A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓比橢圓焦點在軸上的橢圓更接近于圓,求的范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求以橢圓的兩頂點為焦點,以橢圓的焦點為頂點的雙曲線方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點A、B的坐標分別是,.直線相交于點M,且它們的斜率之積為-2.
(Ⅰ)求動點M的軌跡方程;
(Ⅱ)若過點的直線交動點M的軌跡于C、D兩點, 且N為線段CD的中點,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(B題)已知圓C的方程為(x-1)2+y2=9,點p為圓上一動點,定點A(-1,0),線段AP的垂直平分線與直線CP交于點M,則為點M的軌跡為( 。
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

同步練習冊答案