【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸,建立極坐標系,已知曲線的極坐標方程為.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)設(shè)點,直線與曲線交于不同的兩點、,求的值.

【答案】(1)直線的普通方程為,曲線的直角坐標方程;(2)

【解析】

1)可通過直線的參數(shù)方程求出直線的普通方程,然后使用極坐標與直角坐標之間的相互轉(zhuǎn)化求出曲線的直角坐標方程;

2)首先可根據(jù)直線的傾斜角以及點坐標設(shè)出直線的參數(shù)方程,然后將其帶入曲線的方程中并求出的值,最后根據(jù)參數(shù)的幾何意義求出

(1)直線的普通方程為,即,

根據(jù)極坐標與直角坐標之間的相互轉(zhuǎn)化,

,則,即

故直線的普通方程為,曲線的直角坐標方程;

(2)點在直線上,且直線的傾斜角為,可設(shè)直線的參數(shù)方程為:

為參數(shù)),代入到曲線的方程得:,

,,

由參數(shù)的幾何意義知,故。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,,,的中點,點在平面內(nèi)的射影在線段上.

(1)求證:;

(2)若是正三角形,求三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某電商在雙十一搞促銷活動,顧客購滿5件獲得積分30分(不足5件不積分),每多買2件再積20分(不足2件不積分),比如某顧客購買了12件,則可積90分.為了解顧客積分情況,該電商在某天隨機抽取了1000名顧客,統(tǒng)計了當天他們的購物數(shù)額,并將樣本數(shù)據(jù)分為,,,,,,九組,整理得到如圖頻率分布直方圖.

(1)求直方圖中的值;

(2)從當天購物數(shù)額在的顧客中按分層抽樣的方式抽取6人.那么,從這6人中隨機抽取2人,則這2人積分之和不少于240分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓過點,焦距長,過點的直線交橢圓,兩點.

(1)求橢圓的方程;

(2)在軸上是否存在一點,使得為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù)),

(Ⅰ)求函數(shù)的極值;

(Ⅱ)設(shè),若滿足,試判斷方程的實數(shù)根個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是放置在桌面的某三棱柱的三視圖,其中網(wǎng)格小正方形邊長為1.若三棱柱表面上的、兩點在三視圖中的對應(yīng)點為,現(xiàn)一只螞蟻要沿該三棱柱的表面(不包括下底面)從爬到,則所有路徑里最短路徑的長度為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)當時,求證:時,;

(Ⅱ)當時,計論函數(shù)的極值點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨立.

(1)求未來4年中,至多1年的年入流量超過120的概率;

(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系:

年入流量

發(fā)電量最多可運行臺數(shù)

1

2

3

若某臺發(fā)電機運行,則該臺年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應(yīng)安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中a為正實數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有兩個極值點,,求證:.

查看答案和解析>>

同步練習冊答案